
MAT 302: LECTURE SUMMARY

The goal of today’s lecture is to motivate elliptic curves. We start with a problem which was
intensively studied two millennia ago by Greek mathematicians, and quite possibly even earlier by
the Babylonians:

Problem. Determine all integer solutions to x2 + y2 = z2.

There are some trivial solutions to this, for example (1, 0, 1). More generally, we’ll call any so-
lution (x, y, z) trivial if xyz = 0. So the question becomes: what are the nontrivial solutions? A
famous example is (3, 4, 5); this immediately gives rise to infinitely many others, such as (6, 8, 10),
(9, 12, 15), etc. We shall say that (3, 4, 5) is a primitive solution, while the solutions which are
multiples of it are imprimitive. Formally, a solution (x, y, z) is primitive iff the three numbers are
relatively prime to each other. It is easy to see that any imprimitive solution is the multiple of a
primitive one, so to find all integer solutions it suffices to find all the primitive ones.

Finding a nontrivial solution to x2 + y2 = z2 is equivalent to solving(x
z

)2
+
(y
z

)2
= 1.

Thus, to solve our problem it suffices to find all rational solutions (X, Y ) to

(*) X2 + Y 2 = 1.

Of course, it’s not clear that this task is any easier! On the other hand, there are now only two
variables, so that simplifies matters. Equation (*) should be very familiar: it’s the equation of the
unit circle. This makes it natural to try to attack the problem geometrically.

Our goal is to determine all rational points on the circle. (A point is called rational if both of its
coordinates are rational.) There are a few obvious such points, for example, the point (−1, 0); call
this point O. Pick any point P 6= O on the circle, and consider the line passing through P and
O. This line must intersect the y-axis somewhere; this point is called the projection of P from O
onto the y-axis. (Think of a light source atO, and the projection as the location of P’s shadow. Of
course, this is more strictly accurate for points in the second quadrant than in the first, but it’s still
a helpful metaphor.) Note that projection from O is a bijection between the y-axis and the points
of the circle other than O. (Why is this?)

One advantage of projecting the circle onto the y-axis is that lines are easier to understand than
circles. Moreover, a point on the circle is rational if and only if its projection is. (I’ll give a proof
of this below, but you should try to prove it on your own now.) Since the rational points on the
y-axis are in bijection with Q, we see that projection from O gives a bijection between Q and the
rational points on the unit circle (other than O itself). If we can determine this bijection explicitly,
we will be able to generate all rational points on the unit circle, and thus solve our initial problem.
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With this strategy in mind, we prove

Theorem 1. A point P on the unit circle is rational if and only if its projection (from O = (−1, 0)
onto the y-axis) is rational.

Proof. Suppose (0, t) is the projection of (x, y) from O. In other words, t is the y-intercept of the
line through O and (x, y). The line passing through O and (x, y) is the set of points{(

(x+ 1)α− 1, yα
)
: α ∈ R

}
.

The y-intercept occurs when the x-coordinate is 0, i.e. when α = 1
x+1

. Thus, for (0, t) to be in the
set we must have

(♣) t =
y

x+ 1

from which we immediately deduce that if (x, y) is a rational point (other than O) on the circle,
its projection is also rational. Now we prove the converse of this statement, by finding explicit
formulae for x and y in terms of t.

Since (x, y) is a point on the unit circle, x2 + y2 = 1. From (♣) we know that y = (x + 1)t.
Substituting and expanding gives

(1 + t2)x2 + 2t2x+ (t2 − 1) = 0.

x = −1 is a root of this equation (can you see why this is without plugging −1 in?). Factoring the
left hand side gives

(1 + t2)x2 + 2t2x+ (t2 − 1) = (x+ 1)
(
(1 + t2)x+ (t2 − 1)

)
.

We therefore find that

(†) x =
1− t2

1 + t2

which by (♣) implies

(‡) y =
2t

1 + t2
.

It follows that if t ∈ Q, then x and y are rational. �

The equations (†) and (‡) give an explicit bijection from Q to the rational points on the circle.
Writing t = a/b with a and b integers, we conclude that every rational point on the unit circle can
be written in the form (

b2 − a2

b2 + a2
,

2ab

b2 + a2

)
.

Thus, any nontrivial integer solution (x, y, z) to

x2 + y2 = z2

can be written in the form (b2 − a2, 2ab, b2 + a2) for some integers a and b. Conversely, any triple
of this form gives a solution to the equation. We have therefore found a complete set of nontrivial
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solutions to the equation. Not all of these are primitive, however. It is a good exercise to prove that
the set of all nontrivial primitive solutions (up to permuting x and y) is the set{(

b2 − a2, 2ab, b2 + a2
)
: (a, b) = 1

}
.

Actually, there was one statement I made above which was not entirely correct: (†) and (‡) don’t
quite give a bijection between Q and the rational points on the unit circle. Why not? Because O
is missing! Although this doesn’t affect our conclusions (the point (−1, 0) corresponds to a trivial
solution of x2 + y2 = z2) it’s still a bit curious. Note that taking t → ∞ in (†) and (‡) does yield
the special point O. Thus, one might be tempted to formally adjoin ∞ to Q, and say there is a
bijection between Q ∪ {∞} and the rational points on the unit circle.

There’s a more geometric way to view this new infinite element. Recall the construction of the
‘projection from O’ map: given any point P on the unit circle, draw the line going through both
P and O and find its point of intersection with the y-axis: this point is the projection of P . It is
not clear how to carry out this procedure when P = O. Inspired by calculus, we take a sequence
of points P on the circle which get closer and closer to O. As this happens, the line containing
both P andO becomes more and more vertical. It is therefore natural to say the line connectingO
to itself is the vertical line through O, i.e. the line tangent to the circle at O. Of course, this line
doesn’t intersect the y-axis anywhere. However, we can imagine a ‘point at infinity’ where these
two parallel lines do intersect. This is not as foreign as it seems at first. Think of longitudinal lines
on the surface of the earth – they all run directly north-south, so they’re all parallel, and yet they
all intersect at the North and South poles. For a beautiful illustration of a closely related idea, look
up the video ‘Moebius transformations revealed’ on youtube.

Now that we’ve solved the initial problem, we can look at a harder one: find all integer solutions
(x, y, z) to x3 + y3 = z3. As before, there are many trivial solutions in which one of the variables
is 0. What are the nontrivial solutions? The same game as above (projecting points of the curve
onto the y-axis) no longer works, because rational points on the curve don’t necessarily project
onto rational points on the y-axis. After a bit of playing around, you might find that making the
substitutions r = 12

x+y
and s = 36

(
x−y
x+y

)
transforms the original equation into

s2 = r3 − 432.

Conversely, letting x = 36+s
6r

and y = 36−s
6r

gets us back to the original equation x3+y3 = 1. Thus,
finding rational points on x3+ y3 = 1 is equivalent to finding rational points on s2 = r3− 432. It’s
not obvious how to tackle this problem either, but it turns out that quite a lot can be said. Equations
of the form y2 = x3 + ax + b are called elliptic curves, and it is an important open problem to
understand the set of rational points on such curves. We will discuss this topic, as well as the
implications for cryptography, in the next lecture.
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