MAT 302: LECTURE SUMMARY

We began lecture by reviewing the RSA procedure (the original 1977 paper introducing the algo-
rithm has been posted to the course website, incidentally):

(1) Bob (secretly) picks enormous (e.g. 100-digit) primes P and Q).

(2) Bob publicly announces the quantity N(= PQ) and e. Note that e is any positive integer
which is relatively prime to ¢(N).

(3) Alice encrypts a plaintext X by computing X° (mod /NV); she then sends this number (call
it Y) to Bob.

(4) To decrypt this, Bob must solve the equation X¢ = Y (mod N). He does so by computing
d = e ! (mod ¢(N)) and evaluating Y4 (mod N); this recovers the plaintext X .

Oscar can’t crack this because (in decreasing order of generality)

(1) it is unknown how to efficiently solve a congruence X° =Y (mod N) without knowing d;

(2) it is unknown how to efficiently determine d without knowing ¢(N); and

(3) it is unknown how to efficiently determine (V) without knowing the factorization of NN,
i.e. without knowing P and Q).

There are various points in the above summary which demand elaboration. Here are a few which
we discussed today.

(1) Jonathan brought up the following question: how does Bob find such gigantic primes? This
is a serious concern which we will discuss next time (but also, check out Problem 4.4(d)
on the latest assignment!).

(2) One potential attack Oscar could mount is to guess d by brute force: given the ciphertext
Y he could compute Y (mod N) for a bunch of d and hope that the plaintext falls out.
For this reason, it is important that d is very large (and hence unlikely to be guessed).
Therefore, in practice, Bob must first (secretly) select a huge value of d, then compute its
inverse e, which he then makes public. Note that e needn’t be large. In fact, if e is small, it
makes it easier for Alice to encrypt her plaintext.

(3) Last time, in our approach to solving the congruence X° = Y (mod V), we assumed that
the plaintext X is relatively prime to /N. This will almost certainly be the case, since to not
be relatively prime to N, X would have to be divisible by P or (). It is highly unlikely that
Alice’s plaintext would happen to be divisible by one of these two huge primes, or even that
it’s larger than these primes. However, even in the worst case scenario that (X, N) # 1,
RSA still works! For, suppose P | X. Then we may assume () 1 X (otherwise RSA breaks
completely, since the plaintext would be corrupted upon reduction (mod N)). It follows
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that X € ZJ, whence by Euler’s theorem, X*#(?) = 1 (mod () for any integer k. But then
Ye= (X4 = X% = XFWMH — (1 4 jQ)X = X 4+ jQX = X (mod N)

since P | X. It follows that the RSA decryption produces the plaintext, for any X which
is not a multiple of N. And if X is a multiple of NV, it will be totally obvious to Alice that
this is the case (the ciphertext would be just 0) so she would be able to adjust her plaintext
accordingly.

(4) The problem of factoring a large integer is presumed to be difficult (on empirical grounds:
no one has resolved the problem after several decades of intense research). The security
of RSA doesn’t depend on factoring per se, but rather on computing ¢(V), and one might
imagine that there is a clever way to compute ¢(/N') without knowing the factorization of
N. In general, this is an interesting open problem. However, in the specific case of RSA,
where NN is known to have exactly two prime factors P and (), factoring N and comput-
ing p(NV) are of comparable difficulty. To see why, we considered the following problem.
Suppose that N = 2021, that you know that N = P() for some primes P and (), and that
©(N) = 1934. Can you determine P and )?

The first insight was that since p(N) = ¢(P) X ¢(Q) = (P — 1)(Q — 1), we have two
equations in two variables:

PQ = 2021

(P—1)(Q—1)=1934
Thus, we expect to be able to solve this system for P and (). There are many ways to
do this; the method suggested in the original RSA paper is in three steps: (a) expand
(P—1)(Q —1)= N —(P+Q)+1 and use the second equation to deduce P + (); (b) use

the identity (P + Q)? — 4N = (P — Q)? to determine P — Q; and (c) deduce the values of
P and (@ individually by adding or subtracting the two quantities (P + @) and (P — Q).

Would this approach work if N is the product of three primes, rather than just two? This
is a good exercise!



