3. T	
Name:	
I N AIVILL.	

University of Toronto Mississauga Department of Mathematical and Computational Sciences

MAT 302: CRYPTOGRAPHY

Problem Set 4 (due March 15th, 2011 at the start of lecture)

INSTRUCTIONS: Please attach this page as the first page of your submitted problem set.

PROBLEM	MARK
4.1	
4.2	
4.3	
4.4	
4.5	
Total	

Problem Set 4

4.1 Find the inverse of $e \pmod{m}$ in each of the following.

- (a) e = 5, m = 69
- (b) e = 5, m = 31
- (c) e = 5, m = 44
- **4.2** Find all values of $x \in \mathbb{Z}_{77}^{\times}$ satisfying $x^{13} = 3$.
- 4.3 Problem 7.11 in Paar-Pelzl.
- 4.4 In class I discussed the Prime Number Theorem, which asserts that

$$\#\{p \le x\} \sim \int_2^x \frac{dt}{\log t}$$

where log is the natural logarithm.

(a) Prove that

$$\int_2^x \frac{dt}{\log t} \sim \frac{x}{\log x}$$

[Hint: Integrate by parts, or use L'Hôpital's rule: If f(x) and g(x) both tend to ∞ or both tend towards 0, then $\lim_{x\to\infty} f(x)/g(x) = \lim_{x\to\infty} f'(x)/g'(x)$.]

- (b) Assuming the validity of the Prime Number Theorem, prove that for every sufficiently large value of x, there is a prime between x and 2x. This statement is known as Chebyshev's Theorem. [Hint: It may be helpful to rewrite $f(x) \sim g(x)$ in the form f(x) = (1 + o(1))g(x). Of course, if you use this, you should be able to prove it!]
- (c) Again assuming the validity of the Prime Number Theorem, roughly how many primes would you expect between 1,000,000 and 2,000,000? How many primes would you expect between 10^{100} and 2×10^{100} ?
- (d) One way to loosely interpret the Prime Number Theorem is that the probability that a large randomly selected integer n is prime, is roughly $\frac{1}{\log n}$. If you wished to determine a 100-digit prime, how many numbers would you expect to test before finding a prime?
- **4.5** In this problem you will prove that $\sum_{p} \frac{1}{p}$, running over all primes p, diverges. You may not assume the Prime Number Theorem in this question. However, you may use the following helpful fact: if -1 < x < 1, then

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

(a) Let $F(x) = \prod_{p \le x} \left(1 - \frac{1}{p}\right)^{-1}$, where the product runs over all primes $p \le x$. Prove that $F(x) \ge \sum_{n \le x} \frac{1}{n}$, where n runs over all positive integers up to x. [Hint: Use (*).]

2

- (b) Prove that $-\log(1-x) = x + O(x^2)$ whenever $x \le \frac{1}{2}$.
- (c) Prove that $\log F(x) = \sum_{p \le x} \frac{1}{p} + O\left(\sum_{p \le x} \frac{1}{p^2}\right)$, where F(x) is defined in part (a). [Hint: Use part (b)!]
- (d) Prove that $\sum_{p \le x} \frac{1}{p^2} = O(1)$.
- (e) Prove that $\sum_{p} \frac{1}{p}$ diverges.