Last time we proved:
(1) $a \mathbb{Z}+b \mathbb{Z} \subseteq \operatorname{gcd}(a, b) \mathbb{Z}$
(2) Given $a, b \in \mathbb{Z}$ with $b>0, \exists q, r \in \mathbb{Z}$ such that $a=q b+r$ and $0 \leq r<b$.

This essentially means we subtract multiples of b until we can't anymore.
Addendum to (2):
Proposition: Given $a, b \in \mathbb{Z}$ with $b>0$, the choices of q and r are unique.
Proof: (Max) We know that $a=q b+r$, suppose that $a=q^{\prime} b+r^{\prime}$. We want to show that $q=q^{\prime}$ and $r=r^{\prime}$.

Given this set up, then

$$
\begin{aligned}
q b+r & =q^{\prime} b+r^{\prime} \\
\text { whence } \quad b\left(q-q^{\prime}\right) & =r^{\prime}-r
\end{aligned}
$$

Then b divides $r^{\prime}-r$. However $-b<r^{\prime}-r<b$ since $0 \leq r, r^{\prime}<b$. The only multiple of b in this range is 0 , so $r^{\prime}-r=0$, and thus $r^{\prime}=r$. So the choice of r is unique. Using this, $b\left(q-q^{\prime}\right)=0$, so $q-q^{\prime}=0$ and thus $q=q^{\prime}$.
Returning to (1), we want to prove the following:
Claim: $\operatorname{gcd}(a, b) \mathbb{Z} \subseteq a \mathbb{Z}+b \mathbb{Z}$.
Strategy: change our perspective! What role does $\operatorname{gcd}(a, b)$ play in $a \mathbb{Z}+b \mathbb{Z}$? Oliver's conjecture: $\operatorname{gcd}(a, b)$ is the minimal element in $a \mathbb{Z}+b \mathbb{Z}$.
Example: $4 \mathbb{Z}+6 \mathbb{Z}=2 \mathbb{Z}=\{\ldots,-4,-2,0,2,4, \ldots\}$. So the $\operatorname{gcd}(a, b)$ isn't the smallest element but... Amelia notes that it generates all the others and Alex points out that it is the least positive number.
So (we conjecture) the $\operatorname{gcd}(a, b)$ is the minimal positive element in $a \mathbb{Z}+b \mathbb{Z}$.
Proposition: Given $a, b \mathbb{Z}$ (not both zero), let d denote the minimal positive element of $a \mathbb{Z}+b \mathbb{Z}$. Then $d \mathbb{Z} \subseteq a \mathbb{Z}+b \mathbb{Z}$.
Proof: (Jeff) By definition, $d \in a \mathbb{Z}+b \mathbb{Z}$. Then, $d=a x+b y$ for some $x, y \in \mathbb{Z}$. Take any multiple of d, then $d k=a(k x)+b(k y) \in a \mathbb{Z}+b \mathbb{Z}$ for any k. Then $d \mathbb{Z} \subseteq a \mathbb{Z}+b \mathbb{Z}$.
Lemma: Given $a, b \in \mathbb{Z}$ (not both zero), let d be the minimal positive element of $a \mathbb{Z}+b \mathbb{Z}$. Then $d=\operatorname{gcd}(a, b)$.
Proof: First, we prove that d is a common divisor of a and b, i.e. that $d \mid a$ and $d \mid b$. (Notation: $d \mid n$ means " d divides n ".) Akhil points out that $d \in a \mathbb{Z}+b \mathbb{Z}$, so $d=a x+b y$. However, we cannot choose what x and y are because d is a fixed number.
Oliver: Using (2) to compare a and d, this gives us $a=q d+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<d$. Jacob points out that there is no integer greater than zero less than d in the set. So if we
can show $r \in a \mathbb{Z}+b \mathbb{Z}$ we can win! Qiana notes that $r=a-q d$, and $d=a x+b y$ for some $x, y \in \mathbb{Z}$. Then

$$
r=a-q d=a-q(a x+b y)=a(1-q x)+b(-q y) \in a \mathbb{Z}+b \mathbb{Z} .
$$

Since d is the minimal positive integer in $a \mathbb{Z}+b \mathbb{Z}, 0 \leq r<d$, and $r \in a \mathbb{Z}+b \mathbb{Z}$, we must have $r=0$. Then $a=q d$ and thus $d \mid a$. The same approach shows that $d \mid b$.
Next, we need to prove that d is the greatest common divisor of a and b. Alex: assume there is another common divisor, c, i.e. $c \mid a$ and $c \mid b$. We need to show that $c \leq d$. Since we think d is the gcd, it should be true that $c \mid d$ (Qiana). Ben reminds us that $d=a x+b y$, so then dividing by c

$$
\frac{d}{c}=\frac{a x+b y}{c}=\frac{a}{c} x+\frac{b}{c} y \in \mathbb{Z}
$$

so then $c \mid d$, which shows that $c \leq d$. Thus $d=\operatorname{gcd}(a, b)$.
Theorem: Given $a, b \in \mathbb{Z}, a \mathbb{Z}+b \mathbb{Z}=\operatorname{gcd}(a, b) \mathbb{Z}$.
Corollary: (Bézout's Theorem) If a and b are coprime then $\exists x, y \in \mathbb{Z}$, such that $a x+b y=1$.

Fundamental Theorem of Arithmetic

Definition: A positive integer is composite if it can be expressed as the product of two smaller (positive) integers. For example: $60=12 \cdot 5=4 \cdot 3 \cdot 5=2 \cdot 2 \cdot 3 \cdot 5$.
Definition: A positive integer greater than 1 that is not composite is called prime.
Primes are the building blocks of the integers.
Note: 1 is neither prime nor composite.
Notice that we could have factored 60 differently, but would end up with the same primes.
Fundamental Theorem of Arithmetic: Any positive integer $n \geq 2$ can be expressed in the form $n=q_{1} q_{2} \cdots q_{n}$ where the q_{i} 's are prime. This expression is unique, up to ordering of q_{i} 's.

This isn't true in all number systems. For instance, let $\mathcal{E}:=\{2,4,6, \ldots\}$. Now factor 60 in \mathcal{E}. Kimberly points out that $60=6 \cdot 10$, and that both 6 and 10 are prime in \mathcal{E} (i.e. can't be broken down further). But also, $60=2 \cdot 30$, and 2 and 30 are also both prime in \mathcal{E}. Thus in \mathcal{E}, factorization into primes is not unique!

To prove the theorem, we shall need the following tool:
Lemma: If $p \mid a b$ where a and b are positive integers, then $p \mid a$ or $p \mid b$.
This is surprisingly difficult to prove. Ben suggests trying contradiction, so $p+a$ and $p+b$. Then Jacob says that p does not appear in the factorization of a and b, and thus does not appear in the prime factorization of $a b$. Qiana points out that this argument is circular, however, since it assumes the Fundamental Theorem of Arithmetic!

