
Class 2 Notes September 10, 2018

Last time we proved:

(1) aZ + bZ ⊆ gcd(a, b)Z

(2) Given a, b ∈ Z with b > 0, ∃q, r ∈ Z such that a = qb + r and 0 ≤ r < b.

This essentially means we subtract multiples of b until we can’t anymore.

Addendum to (2):

Proposition: Given a, b ∈ Z with b > 0, the choices of q and r are unique.

Proof: (Max) We know that a = qb+ r, suppose that a = q′b+ r′. We want to show that q = q′

and r = r′.

Given this set up, then

qb + r = q′b + r′

whence b(q − q′) = r′ − r

Then b divides r′ − r. However −b < r′ − r < b since 0 ≤ r, r′ < b. The only multiple of b in this

range is 0, so r′ − r = 0, and thus r′ = r. So the choice of r is unique. Using this, b(q − q′) = 0,

so q − q′ = 0 and thus q = q′. ◻

Returning to (1), we want to prove the following:

Claim: gcd(a, b)Z ⊆ aZ + bZ.

Strategy: change our perspective! What role does gcd(a, b) play in aZ + bZ? Oliver’s

conjecture: gcd(a, b) is the minimal element in aZ + bZ.

Example: 4Z + 6Z = 2Z = {. . . ,−4,−2,0,2,4, . . .}. So the gcd(a, b) isn’t the smallest element

but... Amelia notes that it generates all the others and Alex points out that it is the least

positive number.

So (we conjecture) the gcd(a, b) is the minimal positive element in aZ + bZ.

Proposition: Given a, bZ (not both zero), let d denote the minimal positive element of aZ+bZ.

Then dZ ⊆ aZ + bZ.

Proof: (Jeff) By definition, d ∈ aZ+bZ. Then, d = ax+by for some x, y ∈ Z. Take any multiple

of d, then dk = a(kx) + b(ky) ∈ aZ + bZ for any k. Then dZ ⊆ aZ + bZ. ◻

Lemma: Given a, b ∈ Z (not both zero), let d be the minimal positive element of aZ + bZ.

Then d = gcd(a, b).

Proof: First, we prove that d is a common divisor of a and b, i.e. that d ∣ a and d ∣ b.

(Notation: d ∣ n means “d divides n”.) Akhil points out that d ∈ aZ + bZ, so d = ax + by.

However, we cannot choose what x and y are because d is a fixed number.

Oliver: Using (2) to compare a and d, this gives us a = qd+ r for some q, r ∈ Z with 0 ≤ r < d.

Jacob points out that there is no integer greater than zero less than d in the set. So if we
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can show r ∈ aZ + bZ we can win! Qiana notes that r = a − qd, and d = ax + by for some

x, y ∈ Z. Then

r = a − qd = a − q(ax + by) = a(1 − qx) + b(−qy) ∈ aZ + bZ.

Since d is the minimal positive integer in aZ + bZ, 0 ≤ r < d, and r ∈ aZ + bZ, we must have

r = 0. Then a = qd and thus d ∣ a. The same approach shows that d ∣ b.

Next, we need to prove that d is the greatest common divisor of a and b. Alex: assume there

is another common divisor, c, i.e. c ∣ a and c ∣ b. We need to show that c ≤ d. Since we think

d is the gcd, it should be true that c ∣ d (Qiana). Ben reminds us that d = ax + by, so then

dividing by c
d

c
=
ax + by

c
=
a

c
x +

b

c
y ∈ Z

so then c ∣ d, which shows that c ≤ d. Thus d = gcd(a, b). ◻

Theorem: Given a, b ∈ Z, aZ + bZ = gcd(a, b)Z.

Corollary: (Bézout’s Theorem) If a and b are coprime then ∃x, y ∈ Z, such that ax + by = 1.

Fundamental Theorem of Arithmetic

Definition: A positive integer is composite if it can be expressed as the product of two smaller

(positive) integers. For example: 60 = 12 ⋅ 5 = 4 ⋅ 3 ⋅ 5 = 2 ⋅ 2 ⋅ 3 ⋅ 5.

Definition: A positive integer greater than 1 that is not composite is called prime.

Primes are the building blocks of the integers.

Note: 1 is neither prime nor composite.

Notice that we could have factored 60 differently, but would end up with the same primes.

Fundamental Theorem of Arithmetic: Any positive integer n ≥ 2 can be expressed in the

form n = q1q2⋯qn where the qi’s are prime. This expression is unique, up to ordering of qi’s.

This isn’t true in all number systems. For instance, let E ∶= {2,4,6, . . .}. Now factor 60 in

E . Kimberly points out that 60 = 6 ⋅ 10, and that both 6 and 10 are prime in E (i.e. can’t be

broken down further). But also, 60 = 2 ⋅ 30, and 2 and 30 are also both prime in E . Thus in

E , factorization into primes is not unique!

To prove the theorem, we shall need the following tool:

Lemma: If p ∣ ab where a and b are positive integers, then p ∣ a or p ∣ b.

This is surprisingly difficult to prove. Ben suggests trying contradiction, so p ∤ a and p ∤ b.

Then Jacob says that p does not appear in the factorization of a and b, and thus does not

appear in the prime factorization of ab. Qiana points out that this argument is circular,

however, since it assumes the Fundamental Theorem of Arithmetic!
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