Last time: We ended with the following lemma. Note, p is always a prime.
Lemma: If $p \mid a b$ then $p \mid a$ or $p \mid b$.
Proof: Suppose that $p \mid a b$ and that $p+a$. Then we want to show that $p \mid b$. If $p+a$, then (as Miranda observed) we have $\operatorname{gcd}(p, a)=1$: the only factors of p are 1 and p, and p is not a factor of a so the only common factor is 1 . Konnor pointed out that Bézout's theorem yields $\exists x, y \in \mathbb{Z}$ such that $p x+a y=1$. Then multiplying by $b, p b x+a b r=b$. Since $p \mid p b x$, and $p \mid a b y$ since $p \mid a b$, we deduce that $p \mid p b x+a b y$, whence $p \mid b$.

Try this with $a=10, b=6$, and $p=3$ to get a feel for the proof!
Corollary: If $p \mid a_{1} a_{2} \cdots a_{n}$, then $\exists i$ such that $p \mid a_{i}$.
Proof: By induction on n. The base case $n=2$ follows from the Lemma above. For the inductive step, suppose the corollary holds for all $n<k$, then want to show that it holds for k (i.e. that if $p \mid a_{1} a_{2} \cdots a_{k}$, then $p \mid a_{i}$ for some $i \leq k$). Alex suggests breaking the product into $a_{1} a_{2} \cdots a_{k-1}$ and a_{k}. In other words,

$$
\begin{aligned}
p \mid a_{1} a_{2} \cdots a_{k} & \Rightarrow p \mid\left(a_{1} a_{2} \cdots a_{k-1}\right)\left(a_{k}\right) \\
& \Rightarrow p \mid a_{1} a_{2} \cdots a_{k-1} \text { or } p \mid a_{k}
\end{aligned}
$$

where the last implication is a consequence of our lemma. If $p \mid a_{k}$, we're done. But if $p \mid a_{1} a_{2} \cdots a_{k-1}$, then by induction $p \mid a_{i}$ for $i \leq k-1$, and we're done.

Proof of the Fundamental Theorem of Arithmetic:

Recall the theorem asserts that any number can be expressed as a product of primes in an essentially unique way. Implicit in this assertion are two separate claims, which we prove one at a time.

Claim 1: Given $n \geq 2$, we can write $n=q_{1} q_{2} \cdots q_{\ell}$ where every q_{i} is prime.
Proof: By induction on n.
The base case $n=2: 2$ is prime, and $2=2$.
Now for the inductive step, suppose that claim 1 holds for all $n<k$, we need to show that it holds for k. Ben suggests the following cases: k is prime and k is composite.

Case 1: Suppose k is prime. Then $k=k$ and we win!
Case 2: Suppose k is composite. Then since k is composite, we can write $k=a b$ where $2 \leq a, b<k$. By induction, since $2 \leq a, b<k$, we can write each of these as a product of primes. Then k is the product of these products of primes, which means: k is a product of primes!

Claim 2: Given $n \geq 2$, the expression $n=q_{1} q_{2} \cdots q_{\ell}$ where the q_{i} 's are all prime, is the unique
way to write n as a product of primes (up to re-ordering).
Proof: By induction on ℓ, the length of the shortest representation of n as a product of primes.
In the base case, $\ell=1$, Max points out that this means that $n=q_{1}$, where q_{i} is prime, so n is prime and cannot be broken up further.

Now suppose that claim 2 holds for all $\ell<m$. We want to prove that if n can be written as a product of m prime factors, then this is the only way (up to re-ordering) to express n as a product of primes. Let

$$
n=q_{1} q_{2} \cdots q_{m}
$$

be a prime factorization of n.
Max-Thomas-Chris + Qiana + Miranda: Any prime factor of n must be one of the q_{i}.
Indeed, by our Corollary above, if $p \mid n$ then $p \mid q_{i}$ for some i. But q_{i} is prime, so its only factors are 1 and q_{i}. It follows that $p=q_{i}$.

Qiana's proof of uniqueness: Suppose $n=q_{1} q_{2} \cdots q_{m}=p_{1} p_{2} \cdots p_{s}$. We know that $s \geq m$ because m is the shortest length. Look at p_{1}, we know $p_{1} \mid n$, so then by the corollary, $p_{1} \mid q_{1} q_{2} \cdots q_{m}$, so $p_{1}=q_{i}$ for some i. Without loss of generality, let's say $p_{1}=q_{1}$. (We can ensure this by re-labeling the q_{i} 's if necessary). Thus we find

$$
\frac{n}{p_{1}}=q_{2} q_{3} \cdots q_{m}=p_{2} p_{3} \cdots p_{s}
$$

Notice that the number $\frac{n}{p_{1}}$ has a prime factorization that uses fewer than m prime factors, namely $\frac{n}{p_{1}}=q_{2} q_{3} \cdots q_{m}$. Thus our induction hypothesis guarantees that this is the unique prime factorization of $\frac{n}{p_{1}}$; it immediately follows that $s=m$ and that (upon suitably relabeling the p_{i} 's) we have $p_{i}=q_{i}$ for every i. We conclude that n has a unique prime factorization.

Notation Note: By the FTA, any n can be written as $n=q_{1} \cdots q_{\ell}$. Collecting the repeated primes together, we can express this in the form $n=p_{1}^{e_{1}} p_{2}^{e_{2} \cdots p_{k}^{e_{k}}}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are distinct primes and $e_{i} \geq 1$ for every i.

Example: $60=2 \times 5 \times 3 \times 2=2^{2} \times 3^{1} \times 5^{1}$.
A different way to write prime factorizations is

$$
n=\prod_{p} p^{\nu_{p}(n)}
$$

where \prod_{p} means a product over all primes p and $\nu_{p}(n)$ is a nonnegative integer for every prime p.

Class 3 Notes

Example: $60=2^{2} \times 3^{1} \times 5^{1} \times 7^{0} \times 11^{0} \cdots$, so then $\nu_{2}(60)=2, \nu_{3}(60)=1, \nu_{5}(60)=1$, and $\nu_{p}(60)=0$ for all $p \geq 7$.

We finished class with the following: Question: What can you say about $\nu_{p}(a b)$?
Konnor: $\nu_{p}(a b)=\nu_{p}(a)+\nu_{p}(b)$.
Proof: Write

$$
a=\prod_{p} p^{\nu_{p}(a)} \quad b=\prod_{p} p^{\nu_{p}(b)} .
$$

Multiplying these prime factorizations we find

$$
a b=\prod_{p} p^{\nu_{p}(a)+\nu_{p}(b)} .
$$

On the other hand, we have

$$
a b=\prod_{p} p^{\nu_{p}(a b)} .
$$

By the FTA, the prime factorization is unique! This implies that

$$
\nu_{p}(a b)=\nu_{p}(a)+\nu_{p}(b)
$$

as Konnor claimed.

