Last time: We ended with the following lemma. Note, p is always a prime. Lemma: If $p \mid ab$ then $p \mid a$ or $p \mid b$.

<u>Proof:</u> Suppose that $p \mid ab$ and that $p \nmid a$. Then we want to show that $p \mid b$. If $p \nmid a$, then (as Miranda observed) we have gcd(p, a) = 1: the only factors of p are 1 and p, and p is not a factor of a so the only common factor is 1. Konnor pointed out that Bézout's theorem yields $\exists x, y \in \mathbb{Z}$ such that px + ay = 1. Then multiplying by b, pbx + abr = b. Since $p \mid pbx$, and $p \mid aby$ since $p \mid ab$, we deduce that $p \mid pbx + aby$, whence $p \mid b$.

Try this with a = 10, b = 6, and p = 3 to get a feel for the proof!

<u>Corollary:</u> If $p \mid a_1 a_2 \cdots a_n$, then $\exists i$ such that $p \mid a_i$.

<u>Proof:</u> By induction on n. The base case n = 2 follows from the Lemma above. For the inductive step, suppose the corollary holds for all n < k, then want to show that it holds for k (i.e. that if $p \mid a_1a_2\cdots a_k$, then $p \mid a_i$ for some $i \le k$). Alex suggests breaking the product into $a_1a_2\cdots a_{k-1}$ and a_k . In other words,

$$p \mid a_1 a_2 \cdots a_k \Rightarrow p \mid (a_1 a_2 \cdots a_{k-1})(a_k)$$
$$\Rightarrow p \mid a_1 a_2 \cdots a_{k-1} \text{ or } p \mid a_k$$

where the last implication is a consequence of our lemma. If $p \mid a_k$, we're done. But if $p \mid a_1 a_2 \cdots a_{k-1}$, then by induction $p \mid a_i$ for $i \leq k-1$, and we're done.

Proof of the Fundamental Theorem of Arithmetic:

Recall the theorem asserts that any number can be expressed as a product of primes in an essentially unique way. Implicit in this assertion are two separate claims, which we prove one at a time.

<u>Claim 1:</u> Given $n \ge 2$, we can write $n = q_1 q_2 \cdots q_\ell$ where every q_i is prime.

<u>Proof:</u> By induction on n.

The base case n = 2: 2 is prime, and 2 = 2. \checkmark

Now for the inductive step, suppose that claim 1 holds for all n < k, we need to show that it holds for k. Ben suggests the following cases: k is prime and k is composite.

Case 1: Suppose k is prime. Then k = k and we win!

Case 2: Suppose k is composite. Then since k is composite, we can write k = ab where $2 \le a, b < k$. By induction, since $2 \le a, b < k$, we can write each of these as a product of primes. Then k is the product of these products of primes, which means: k is a product of primes!

<u>Claim 2</u>: Given $n \ge 2$, the expression $n = q_1 q_2 \cdots q_\ell$ where the q_i 's are all prime, is the unique

way to write n as a product of primes (up to re-ordering).

<u>Proof:</u> By induction on ℓ , the length of the shortest representation of n as a product of primes.

In the base case, $\ell = 1$, Max points out that this means that $n = q_1$, where q_i is prime, so n is prime and cannot be broken up further.

Now suppose that claim 2 holds for all $\ell < m$. We want to prove that if n can be written as a product of m prime factors, then this is the only way (up to re-ordering) to express n as a product of primes. Let

$$n = q_1 q_2 \cdots q_m$$

be a prime factorization of n.

<u>Max-Thomas-Chris + Qiana + Miranda</u>: Any prime factor of n must be one of the q_i .

Indeed, by our Corollary above, if $p \mid n$ then $p \mid q_i$ for some *i*. But q_i is prime, so its only factors are 1 and q_i . It follows that $p = q_i$.

Qiana's proof of uniqueness: Suppose $n = q_1q_2\cdots q_m = p_1p_2\cdots p_s$. We know that $s \ge m$ because m is the shortest length. Look at p_1 , we know $p_1 \mid n$, so then by the corollary, $p_1 \mid q_1q_2\cdots q_m$, so $p_1 = q_i$ for some i. Without loss of generality, let's say $p_1 = q_1$. (We can ensure this by re-labeling the q_i 's if necessary). Thus we find

$$\frac{n}{p_1} = q_2 q_3 \cdots q_m = p_2 p_3 \cdots p_s$$

Notice that the number $\frac{n}{p_1}$ has a prime factorization that uses fewer than m prime factors, namely $\frac{n}{p_1} = q_2 q_3 \cdots q_m$. Thus our induction hypothesis guarantees that this is the *unique* prime factorization of $\frac{n}{p_1}$; it immediately follows that s = m and that (upon suitably relabeling the p_i 's) we have $p_i = q_i$ for every i. We conclude that n has a unique prime factorization. \Box

<u>Notation Note</u>: By the FTA, any n can be written as $n = q_1 \cdots q_\ell$. Collecting the repeated primes together, we can express this in the form $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ where $p_1 < p_2 < \cdots < p_k$ are distinct primes and $e_i \ge 1$ for every i.

Example: $60 = 2 \times 5 \times 3 \times 2 = 2^2 \times 3^1 \times 5^1$.

A different way to write prime factorizations is

$$n=\prod_p p^{\nu_p(n)},$$

where \prod_p means a product over all primes p and $\nu_p(n)$ is a nonnegative integer for every prime p.

Example: $60 = 2^2 \times 3^1 \times 5^1 \times 7^0 \times 11^0 \dots$, so then $\nu_2(60) = 2$, $\nu_3(60) = 1$, $\nu_5(60) = 1$, and $\nu_p(60) = 0$ for all $p \ge 7$.

We finished class with the following: <u>Question</u>: What can you say about $\nu_p(ab)$?

Konnor: $\nu_p(ab) = \nu_p(a) + \nu_p(b)$.

<u>Proof:</u> Write

$$a = \prod_{p} p^{\nu_p(a)} \qquad \qquad b = \prod_{p} p^{\nu_p(b)}.$$

Multiplying these prime factorizations we find

$$ab = \prod_p p^{\nu_p(a) + \nu_p(b)}.$$

On the other hand, we have

$$ab = \prod_p p^{\nu_p(ab)}.$$

By the FTA, the prime factorization is unique! This implies that

$$\nu_p(ab) = \nu_p(a) + \nu_p(b)$$

as Konnor claimed.