
Class 3 Notes September 13, 2018

Last time: We ended with the following lemma. Note, p is always a prime.

Lemma: If p ∣ ab then p ∣ a or p ∣ b.
Proof: Suppose that p ∣ ab and that p ∤ a. Then we want to show that p ∣ b. If p ∤ a, then

(as Miranda observed) we have gcd(p, a) = 1: the only factors of p are 1 and p, and p is not

a factor of a so the only common factor is 1. Konnor pointed out that Bézout’s theorem

yields ∃x, y ∈ Z such that px + ay = 1. Then multiplying by b, pbx + abr = b. Since p ∣ pbx,

and p ∣ aby since p ∣ ab, we deduce that p ∣ pbx + aby, whence p ∣ b. ◻

Try this with a = 10, b = 6, and p = 3 to get a feel for the proof!

Corollary: If p ∣ a1a2⋯an, then ∃i such that p ∣ ai.
Proof: By induction on n. The base case n = 2 follows from the Lemma above. For the

inductive step, suppose the corollary holds for all n < k, then want to show that it holds for

k (i.e. that if p ∣ a1a2⋯ak, then p ∣ ai for some i ≤ k). Alex suggests breaking the product

into a1a2⋯ak−1 and ak. In other words,

p ∣ a1a2⋯ak ⇒ p ∣ (a1a2⋯ak−1)(ak)
⇒ p ∣ a1a2⋯ak−1 or p ∣ ak

where the last implication is a consequence of our lemma. If p ∣ ak, we’re done. But if

p ∣ a1a2⋯ak−1, then by induction p ∣ ai for i ≤ k − 1, and we’re done. ◻

Proof of the Fundamental Theorem of Arithmetic:

Recall the theorem asserts that any number can be expressed as a product of primes in an

essentially unique way. Implicit in this assertion are two separate claims, which we prove

one at a time.

Claim 1: Given n ≥ 2, we can write n = q1q2⋯q` where every qi is prime.

Proof: By induction on n.

The base case n = 2: 2 is prime, and 2 = 2. ✓

Now for the inductive step, suppose that claim 1 holds for all n < k, we need to show that it

holds for k. Ben suggests the following cases: k is prime and k is composite.

Case 1: Suppose k is prime. Then k = k and we win!

Case 2: Suppose k is composite. Then since k is composite, we can write k = ab where

2 ≤ a, b < k. By induction, since 2 ≤ a, b < k, we can write each of these as a product of

primes. Then k is the product of these products of primes, which means: k is a product of

primes!

Claim 2: Given n ≥ 2, the expression n = q1q2⋯q` where the qi’s are all prime, is the unique
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way to write n as a product of primes (up to re-ordering).

Proof: By induction on `, the length of the shortest representation of n as a product of

primes.

In the base case, ` = 1, Max points out that this means that n = q1, where qi is prime, so n

is prime and cannot be broken up further.

Now suppose that claim 2 holds for all ` <m. We want to prove that if n can be written as

a product of m prime factors, then this is the only way (up to re-ordering) to express n as

a product of primes. Let

n = q1q2⋯qm
be a prime factorization of n.

Max-Thomas-Chris + Qiana + Miranda: Any prime factor of n must be one of the qi.

Indeed, by our Corollary above, if p ∣ n then p ∣ qi for some i. But qi is prime, so its only

factors are 1 and qi. It follows that p = qi.

Qiana’s proof of uniqueness: Suppose n = q1q2⋯qm = p1p2⋯ps. We know that s ≥m because

m is the shortest length. Look at p1, we know p1 ∣ n, so then by the corollary, p1 ∣ q1q2⋯qm,

so p1 = qi for some i. Without loss of generality, let’s say p1 = q1. (We can ensure this by

re-labeling the qi’s if necessary). Thus we find

n
p1
= q2q3⋯qm = p2p3⋯ps

Notice that the number n
p1

has a prime factorization that uses fewer than m prime factors,

namely n
p1
= q2q3⋯qm. Thus our induction hypothesis guarantees that this is the unique prime

factorization of n
p1

; it immediately follows that s =m and that (upon suitably relabeling the

pi’s) we have pi = qi for every i. We conclude that n has a unique prime factorization. ◻

Notation Note: By the FTA, any n can be written as n = q1⋯q`. Collecting the repeated

primes together, we can express this in the form n = pe11 pe22 ⋯p
ek
k where p1 < p2 < ⋯ < pk are

distinct primes and ei ≥ 1 for every i.

Example: 60 = 2 × 5 × 3 × 2 = 22 × 31 × 51.

A different way to write prime factorizations is

n =∏
p

pνp(n),

where ∏p means a product over all primes p and νp(n) is a nonnegative integer for every

prime p.
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Example: 60 = 22×31×51×70×110⋯, so then ν2(60) = 2, ν3(60) = 1, ν5(60) = 1, and νp(60) = 0

for all p ≥ 7.

We finished class with the following: Question: What can you say about νp(ab)?

Konnor: νp(ab) = νp(a) + νp(b).

Proof: Write

a =∏
p

pνp(a) b =∏
p

pνp(b).

Multiplying these prime factorizations we find

ab =∏
p

pνp(a)+νp(b).

On the other hand, we have

ab =∏
p

pνp(ab).

By the FTA, the prime factorization is unique! This implies that

νp(ab) = νp(a) + νp(b)

as Konnor claimed. ◻
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