
Class 5 Notes September 20, 2018

Review of proofs from last time that
√

2 ∉ Q:

Theorem:
√

2 ∉ Q.

Main idea is to show that S ∶ {n ≥ 1 ∶ n
√

2 ∈ Z} is empty. Since S is a set of positive integers,

if nonempty, it must have a least element. The contrapositive: if S has no least element,

then S must be empty!

Proof 1: If b ∈ S, then b/2 ∈ S so S has no least element. Thus S = ∅.

Proof 2: If b ∈ S, then b(
√

2 − 1) ∈ S so S has no least element since
√

2 − 1 < 1. Thus S = ∅.

Proof 3: If b ∈ S, then ∃b′ ∈ S b′ < b. S has no least element, thus S = ∅. (see Class 4 notes)

Now we give one more proof of this theorem.

Proof 4: Suppose b ∈ S. Then ∃a ∈ Z such that a
b =
√

2. We have

a

b
=
√

2 =

√
2 − 1
√

2 − 1

√
2 =

2 −
√

2
√

2 − 1
=

2 − a
b

a
b − 1

=
2b − a

a − b

We would like to show that 0 < a − b < b so then a − b < b and a ∈ S.

Miranda: We know a/b =
√

2 so then

1 <
√

2 < b Ô⇒ 1 <
a

b
< 2 Ô⇒ b < a < 2b Ô⇒ 0 < a − b < b

Bézout representations

We next moved on to a topic related to the Euclidean algorithm (as well as to a problem

for the homework you just submitted). Recall: that we know gcd(a, b) = ax + by for some

x, y ∈ Z. But how do we find x and y? Turns out we can run the Euclidean algorithm

backwards.

54 − 37 = 17

37 − 2(17) = 3

17 − 5(3) = 2

3 − 2 = 1

Konnor suggests substituting backwards. Akhil demonstrates:

54 − 37 = 17

37 − 2(17) = 37 − 2(54 − 37) = 3

17 − 5(3) = (54 − 37) − 5 (37 − 2(54 − 37)) = 2

3 − 2 = 37 − 2(54 − 37) − ((54 − 37) − 5 (37 − 2(54 − 37))) = 1
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So then expanding the last line,

37 − 2(54 − 37) − ((54 − 37) − 5 (37 − 2(54 − 37))) = 19 ⋅ 37 − 13 ⋅ 54 = 1

Ben suggests a short cut, once we have one of the coefficients we can solve for the coefficient

of the other. Max suggests simplifying as you go, to reduce possible arithmetic errors. Also,

notice that you can go the other directions (i.e. up the lines instead of down). For example:

1 = 3 − 2 = 3 − (17 − 5(3)) = 6(3) − (17) = 6(37 − 2(17)) − 17

= 6(37) − 13(17) = 6(37) − 13(54 − 37) = −13(54) + 19(37)

So we have 1 = −13 ⋅ 54 + 19 ⋅ 37, which is what we had before!

Konnor: If 3x+5y = 1, then gcd(x, y) = 1. But what if 3x+5y = 8? Then 8 is not necessarily

the gcd, but it is a multiple of the gcd. So if 3x + 5y = 1, the 1 is a multiple of the gcd, so

gcd is 1. Miranda remarks then that if ax + by = p for a prime p, then gcd(a, b) must either

be 1 or p.

Distribution of Primes

List of primes: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71, . . ..

Theorem: There are infinitely many primes.

Proof: (≥ 2,000 years old, written down by Euclid in the Elements)

It suffices to prove the following assertion:

Claim: Given any finite collection of primes, there exists a prime p not in the collection.

Proof of claim: Given a finite list of primes, q1, q2, . . . , qn. Consider the integer q1q2⋯qn + 1.

The FTA implies that this integer is a product of primes; in particular, there exists some

prime p such that

p ∣ q1q1⋯qn + 1.

Konnor pointed out that p must be different than any of the primes in our list. To see this,

suppose p = qi for some i. Then we’d have p ∣ q1q2⋯qn, whence

p ∣ (q1q1⋯qn + 1) − q1q2⋯qn = 1

but p ∤ 1 because p is a prime. Thus p ≠ qi for any i, and is a new prime not on our list. ◻

We can use Euclid’s approach to generate primes. Starting with {2}, we can get 3, so we

have {2,3}. Then 2 ⋅ 3 + 1 = 7, so we have {2,3,7}. Using these we get {2,3,7,43}, etc.

Open question. Does this process generate all the primes? Or does there exist some prime

that will never get generated?
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OK, so there are infinitely many primes. How quickly do they grow? There are many ways

to make this question precise. A natural approach is to ask how large the nth prime is?

Write the sequence of primes in increasing order:

2 = p1 < p2 < p3 < ⋯

(so that, for example, p2 = 3 and p3 = 5).

Proposition: pn ≤ 22n−1 for all n ≥ 1.

Proof: By (strong) induction. First we check the base case n = 1: p1 = 2 = 221−1 . ✓

Now suppose that pk ≤ 22k−1 for every 1 ≤ k < n. We want to show that the claim holds for

n. By the FTA there exists some prime p ∣ p1p2p3⋯pn−1 + 1. From Euclid’s proof we know

that p ≠ pi for any of i ≤ n − 1, which means that p ≥ pn. Thus

pn ≤ p ≤ p1p2⋯pn−1 + 1 ≤ 220221⋯22n−2 + 1 = 220+21+⋯2n−2 + 1 = 22n−1−1 + 1 ≤ 22n−1 .

By induction, pn ≤ 22n−1 for every n ≥ 1.
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