
Class 6 Notes September 24, 2018

Last time: We proved that the nth prime number is less than 22n−1 for all n ≥ 1. What does

this tell us about the rate at which primes tend to infinity?

Let π(x) ∶= #{p ≤ x}. Examples: π(10) = 4, π(10.2) = 4. If we graph π(x) for small

numbers, it looks really jagged. But if you zoom out it looks super smooth. What smooth

function does it look like? The Prime Number Theorem answers this. The first, simpler

answer is: it looks like x/log x. A more refined answer: it looks like a certain integral, called

the Logarithmic Integral (or Li(x) for short). Here are some pictures, courtesy of Robert

Lemke Oliver.

Figure 1: π(x) is bumpy Figure 2: I swear the blue line is there

We’ll come back to these ideas soon. First, we observe that we can leverage our result

from last class to say something about the growth of π(x). Given x ≥ 2, there exists some

prime pn ≤ x < pn+1 (i.e. pn is the largest prime less than or equal to x). Then π(x) = n.

Using our bound, x < pn+1 ≤ 22n = 22π(x) . Thus x < 22π(x) , from which it follows that

π(x) > log2(log2(x)).

Note: no mathematician uses log2 or even log10. The natural log to use is loge = ln, which

is well behaved because its derivative is 1
x . From here on out, we’ll write log to denote the

natural log. How do we rewrite our above bound in terms of log rather than log2? It turns

out that, with the proper notation, this is a simple task.

Definition: We write f(x) ≪ g(x) iff there exists some constant C ≥ 0 such that ∣f(x)∣ ≤ C ⋅ g(x)
for all sufficiently large x.

Thus, for example,

π(x) > log2(log2(x)) =
log(log2(x))

log(2) =
log( log(x)

log(2))
log(2) ≫ log logx.
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More examples using ≪:

x≪ 10x + 2

10x + 2 ≪ x

sinx≪ x

sinx≪ 1

Note in particular (from the last example) that f(x) ≪ g(x) does not mean that f(x)/g(x)
tends to a limit; it merely means that the quantity f(x)/g(x) is bounded for all large x.

Note that π(x) ≫ log logx is a pretty terrible bound; log logx grows super slowly. (e.g.

log log 1070 ≈ 5). In fact even just logx grows pretty slowly:

Claim: logx ≤ x for all x ≥ 1.

Proof: Observe that logx grows more slowly than x. To see this consider their derivatives,
1
x and 1 respectively. So when x ≥ 1, logx has a small derivative than x. At x = 1,

log 1 = 0 ≤ 1 = x. So logx starts smaller than x and it grows more slowly, so logx ≤ x for all

x ≥ 1. ◻

Claim: log(x) ≤ √
x for all x ≥ 4.

Proof (Ben): The derivative of logx is 1
x and the derivative of

√
x is 1

2
√
x
. When does logx

grow slower than
√
x?

1

x
≤ 1

2
√
x

⇐⇒ 2 ≤ x√
x
=
√
x ⇐⇒ 4 ≤ x.

Thus for all x ≥ 4, we see that logx grows more slowly than
√
x. Moreover, at x = 4 we have

log(4) = log 22 = 2 log 2 < 2 =
√

4.

Thus logx starts smaller than
√
x and grows more slowly, too, so it can never catch up. This

proves the claim. ◻

Note that our new notation allows us to be lazier: we can just write logx ≪ √
x, and note

worry about where the precise inequality begins. Similarly, we can prove that logx≪ x1/1000.

An even stronger statement is that logx = o(x1/1000), where the ‘little-oh’ notation is defined

as follows:

Definition: f(x) = o(g(x)) if and only if lim
x→∞

f(x)
g(x) = 0.

Examples: x = o(x2) and 1
x = o(1).

We now return to our question from before: how does π(x) grow?
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Prime Number Theorem: π(x) ∼ x
log(x) .

Definition: We say f(x) ∼ g(x) (“f(x) is asymptotic to g(x)”) if and only if lim
x→∞

f(x)
g(x) = 1.

Gauss guessed that there’s a better version of this:

Prime Number Theorem v2.0: π(x) ∼ ∫
x

2
dt

log(t) .

(See the pictures above to see why this is a better estimate.)

Proving the Prime Number Theorem is quite hard, as evidenced by the fact that Gauss

never managed to do it. (In fact, it took another century after Gauss’ conjecture before

it was proved (independently) by Hadamard and de la Vallée Poussin in 1896.) Among

other things, the proof requires complex analysis (think ‘calculus with complex numbers’).

Although we won’t prove it in this class, we’ll be able to prove something almost as good:

Theorem(Chebyshev): x
log(x) ≪ π(x) ≪ x

log(x)

This seems similar to prime number theorem (it is!), but it’s weaker: it just says
π(x)
x/log x is

bounded between two constants, whereas the prime number theorem says that the quotient

actually tends to 1. Today we’ll make good progress towards the upper bound:

Claim: π(x) ≪ x
log(x) .

Proof: (Chebyshev’s proof, with a flourish by Ramanujan)

We will analyze (n
k
) = the number of ways to choose k objects from n objects. Recall the

formula (n
k
) = n!

(n−k)!k! , and its connection to the Binomial Theorem:

(a + b)n = (a + b)(a + b)⋯(a + b) =
n

∑
j=0

(n
k
)akbn−k

because we’re picking k brackets to select a from, and then selecting b’s from all the rest.

Let’s look at (2n
n
). What can you say about the prime factorization of (2n

n
)? We stared at

the formula for a bit before having an idea:

(2n

n
) = (2n)!

(n!)2

Max and Miranda conjectured that 2 will divide (2n
n
), because there should be a lot more

factors of 2 in the numerator than in the denominator. We were unable to prove this, but

it inspired Oliver to notice that all the primes between n and 2n will definitely not get

cancelled, so they will divide (2n
n
). More formally, for all primes p such that n < p ≤ 2n we
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have p ∣ (2nn ), i.e. νp((2nn )) ≥ 1 whenever n < p ≤ 2n. Thus we deduce

∏
n<p≤2n

p ∣ (2n

n
)

The LHS is about primes, while the RHS isn’t, which is good! To make the situation even

nicer, we observe that

(2n

n
) ≤ 22n.

Indeed, we have

(1 + 1)2n = (2n

0
) + (2n

1
) +⋯ + (2n

2n
) ≥ (2n

n
).

Putting everything together, we have

∏
n<p≤2n

p ≤ 22n.

Now products are hard to manipulate but sums are easier, so we apply a log:

∏
n<p≤2n

p ≤ 22n Ô⇒ log( ∏
n<p≤2n

p) ≤ log(22n) Ô⇒ ∑
n<p≤2n

log p ≤ 2n log 2 ≪ n.

Next we derive a lower bound on the LHS of this inequality. Note that for every prime

p ∈ (n,2n] we have log p ≥ logn. It follows that

n≫ ∑
n<p≤2n

log p ≥ ∑
n<p≤2n

logn = (π(2n) − π(n)) logn.

Thus, we deduce the bound

π(2n) − π(n) ≪ n

logn
.

Looking back at the claim, we see that this looks pretty good! Next time we’ll quickly deduce

the claim from this bound, and then tackle the lower bound in Chebyshev’s theorem.
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