Last time, we proved that

$$
\begin{equation*}
\pi(2 n)-\pi(n) \ll \frac{n}{\log n} \tag{1}
\end{equation*}
$$

for every integer $n \geq 2$. We will deduce from this the following upper bound:
Theorem (Chebyshev): $\pi(x) \ll \frac{x}{\log x}$ for all real numbers $x \geq 2$.
Proof: As a first step, we prove

$$
\begin{equation*}
\pi(x)-\pi\left(\frac{x}{2}\right) \ll \frac{x}{\log x} \quad \forall x \geq 2 . \tag{2}
\end{equation*}
$$

Of course, this looks an awful lot like equation (1) above, and the natural temptation is to apply it with $n=\frac{x}{2}$. The problem is that (1) only applies when n is an integer, so we can't set $n:=\frac{x}{2}$. Instead, we do the next best thing: set $n:=\left\lfloor\frac{x}{2}\right\rfloor$. Then $\pi\left(\frac{x}{2}\right)=\pi(n)$. What can we say about $\pi(x)$ in terms of n ? Well, by definition of the floor function we have

$$
n \leq x / 2<n+1 .
$$

Thus $2 n \leq x<2 n+2$, whence $\pi(x)=\pi(2 n)$ or $\pi(2 n+1)$; in particular, we deduce

$$
\pi(x) \leq \pi(2 n)+1
$$

(Why?) Thus we have

$$
\pi(x)-\pi\left(\frac{x}{2}\right) \leq \pi(2 n)+1-\pi(n)=\pi(2 n)-\pi(n)+1 \leq C \frac{n}{\log n}+1
$$

from (1). (Here C is some positive constant.) Since $1 \leq \frac{n}{\log n}$ for large enough n, we deduce that

$$
\pi(x)-\pi\left(\frac{x}{2}\right) \ll \frac{n}{\log n}
$$

The final step is to rewrite the right hand side in terms of x. This is where the \ll symbol becomes very useful:

$$
\frac{n}{\log n} \leq \frac{x / 2}{\log (x / 2-1)} \ll \frac{x}{\log x} .
$$

Intuitively, this should be clear: when x is large, subtracting 1 from $\frac{x}{2}$ doesn't really change the size by much, and $\log x / 2=\log x-\log 2$ is roughly the same size as $\log x$. To argue this more rigorously, observe that for all large x we have $\log (x / 2-1) \geq \log x / 4 \geq \log \sqrt{x} \gg \log x$. Putting all our work together, we've proved (2)!

Now we're ready for the final act: we will prove that

$$
\begin{equation*}
\pi(x) \ll \frac{x}{\log x} \tag{3}
\end{equation*}
$$

Alex points out that (2) implies $\pi(x) \leq \pi(x / 2)+\frac{C x}{\log x}$, so if we somehow knew that $\pi(x / 2)$ were small then we'd be able to prove (3). Unfortunately, it's not clear how to show that $\pi(x / 2)$ is small, since this is essentially the same as the assertion we're trying to prove!

Konnor came up with a different approach. He observed that (2) implies not just a single inequality, but many different ones:

$$
\begin{gathered}
\pi(x)-\pi(x / 2) \leq C \cdot \frac{x}{\log x} \\
\pi\left(\frac{x}{2}\right)-\pi\left(\frac{x}{4}\right) \leq C \cdot \frac{x / 2}{\log x / 2} \\
\pi\left(\frac{x}{4}\right)-\pi\left(\frac{x}{8}\right) \leq C \cdot \frac{x / 4}{\log x / 4} \\
\vdots \\
\pi\left(\frac{x}{2^{\ell}}\right)-\pi\left(\frac{x}{2^{\ell+1}}\right) \leq C \cdot \frac{x / 2^{\ell}}{\log x / 2^{\ell}}
\end{gathered}
$$

The absolutely crucial observation here is that the constants C appearing on the right hand sides are all the same constant. This is the power of the bound (2): that the implicit constant is independent of x.

The natural next step is to sum all these inequalities up. The sum of all the left hand sides is super nice: everything cancels apart from the first and last term, and if we take ℓ large enough then $\pi\left(\frac{x}{2^{\ell+1}}\right)$ becomes very small and we can employ a version of Alex's idea from above. The problem now becomes: what can we say about the sum of the right hand sides? We have a bunch of fractions, each with a different denominator... it's a mess to add them up! Fortunately, there's a trick.

Pick ℓ such that $\frac{x}{2^{\ell+1}} \leq \sqrt{x}<\frac{x}{2^{\ell}}$. Then

$$
\begin{array}{cc}
\pi(x)-\pi(x / 2) \leq C \cdot \frac{x}{\log x} & \leq C \cdot \frac{x}{\log \sqrt{x}} \\
\pi\left(\frac{x}{2}\right)-\pi\left(\frac{x}{4}\right) \leq C \cdot \frac{x / 2}{\log x / 2} & \leq C \cdot \frac{x / 2}{\log \sqrt{x}} \\
\pi\left(\frac{x}{4}\right)-\pi\left(\frac{x}{8}\right) \leq C \cdot \frac{x / 4}{\log x / 4} & \leq C \cdot \frac{x / 4}{\log \sqrt{x}} \\
\vdots & \\
\pi\left(\frac{x}{2^{\ell}}\right)-\pi\left(\frac{x}{2^{\ell+1}}\right) \leq C \cdot \frac{x / 2^{\ell}}{\log x / 2^{\ell}} & \leq C \cdot \frac{x / 2^{\ell}}{\log \sqrt{x}}
\end{array}
$$

Now the right hand sides all have the same denominator, so we can add them up:

$$
\pi(x)-\pi\left(\frac{x}{2^{\ell+1}}\right) \leq C \cdot \frac{x}{\log \sqrt{x}}\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right) \leq \frac{2 C x}{\frac{1}{2} \log x}=\frac{4 C x}{\log x} .
$$

Now we apply Alex's idea:

$$
\pi(x) \leq \frac{4 C x}{\log x}+\pi\left(\frac{x}{2^{\ell+1}}\right) \leq \frac{4 C x}{\log x}+\pi(\sqrt{x}) \leq \frac{4 C x}{\log x}+\sqrt{x}=\frac{x}{\log x}(4 C+o(1)) \ll \frac{x}{\log x} .
$$

This technique is called "splitting into dyadic blocks", the 'dyadic' comes from 2^{k} to 2^{k+1}.
Theorem (Chebyshev): $\pi(x) \gg \frac{x}{\log x}$
Proof: Consider $\binom{2 n}{n}$ once more. Consider its prime factorization:

$$
\binom{2 n}{n}=\prod_{p} p^{\nu_{p}\left(\binom{2 n}{n}\right)} \Longrightarrow \log \binom{2 n}{n}=\sum_{p} \nu_{p}\left(\binom{2 n}{n}\right) \log p=\sum_{p \leq 2 n} \nu_{p}\left(\binom{2 n}{n}\right) \log p
$$

Lemma: $\nu_{p}\left(\binom{2 n}{n}\right) \leq \frac{\log 2 n}{\log p}$. [We will prove this below.]
Taking the lemma on faith for now, we have

$$
\log \binom{2 n}{n}=\sum_{p \leq 2 n} \nu_{p}\left(\binom{2 n}{n}\right) \log p \leq \sum_{p \leq 2 n} \log 2 n=\log 2 n \sum_{p \leq 2 n} 1=\pi(2 n) \log 2 n
$$

which tells us that

$$
\begin{equation*}
\pi(2 n) \geq \frac{\log \binom{2 n}{n}}{\log 2 n} \tag{4}
\end{equation*}
$$

Thus if we can get a nice lower bound on $\log \binom{2 n}{n}$, we'll find a nice lower bound on $\pi(2 n)$. Recall that

$$
2^{2 n}=(1+1)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} \leq \sum_{k=0}^{2 n}\binom{2 n}{n}=(2 n+1)\binom{2 n}{n}
$$

whence $\binom{2 n}{n} \geq \frac{2^{2 n}}{2 n+1}$. Taking logarithms, we find

$$
\log \binom{2 n}{n} \geq 2 n \log 2-\log (2 n+1)=n(2 \log 2-o(1)) \gg n
$$

Plugging this into (4) gives

$$
\pi(2 n) \geq \frac{\log \binom{2 n}{n}}{\log 2 n} \gg \frac{n}{\log 2 n} \gg \frac{n}{\log n} .
$$

This is almost what we want; all that's left to do is to extrapolate from this a more general bound that holds for real number inputs. Just as we did before, set $n:=\left\lfloor\frac{x}{2}\right\rfloor$, from which it follows that $2 n \leq x<2 n+2$. In particular,

$$
\pi(x) \geq \pi(2 n) \gg \frac{n}{\log n} \geq \frac{x / 2-1}{\log x / 2} \gg \frac{x-2}{\log x}=\frac{x(1-o(1))}{\log x} \gg \frac{x}{\log x} .
$$

Actually, we're not quite finished: we need to go back and prove the lemma.

Proof of Lemma: First note that $\nu_{p}\left(\binom{2 n}{n}\right)=\nu_{p}\left(\frac{(2 n)!}{(n!)^{2}}\right)=\nu_{p}((2 n)!)-2 \nu_{p}(n!)$. Thus we're naturally led to the question: what is $\nu_{p}(k!)$? To build intuition, we considered an example: what's $\nu_{2}(13!)$? We write out the numbers from 1 to 13 and under each number place a \checkmark for each factor of 2 that number contributes:

Counting the total number of \checkmark 's, we see that $\nu_{2}(13!)=10$. But, staring at this diagram, we see another approach to counting the \checkmark 's emerge: we count by row. How many \checkmark 's are in the first row? There's one for each even number less than 13 , and there are $\left\lfloor\frac{13}{2}\right\rfloor=6$ of these. What about the second row? We get a second factor of 2 precisely under the multiples of 4 , and there are precisely $\left\lfloor\frac{13}{4}\right\rfloor=3$ of these. To get a third factor of 2 we need multiples of 8 , and there are $\left\lfloor\frac{13}{8}\right\rfloor=1$ of these. At this point we can stop, because there are no multiples of 16 up to 13 .

This process generalizes in a straightforward way: for any p and any k we have

$$
\nu_{p}(k!)=\sum_{j \geq 1}\left\lfloor\frac{k}{p^{j}}\right\rfloor=\sum_{1 \leq j \leq N}\left\lfloor\frac{k}{p^{j}}\right\rfloor \quad \text { for any } N \geq \frac{\log k}{\log p} .
$$

Where does this endpoint come from? Well, $\left\lfloor{ }^{k} / p^{j}\right\rfloor=0$ whenever $p^{j}>k$, and $p^{j} \leq k$ iff $j \leq \frac{\log k}{\log p}$.
Using this formula, we find

$$
\begin{aligned}
\nu_{p}\left(\binom{2 n}{n}\right) & =\nu_{p}((2 n)!)-2 \nu_{p}(n!) \\
& =\sum_{1 \leq j \leq \frac{\log 2 n}{\log p}}\left\lfloor\frac{2 n}{p^{j}}\right\rfloor-2 \sum_{1 \leq j \leq \log 2 n}^{\log p}\left\lfloor\frac{n}{p^{j}}\right\rfloor \\
& =\sum_{1 \leq j \leq \frac{\log 2 n}{\log p}}\left(\left\lfloor\frac{2 n}{p^{j}}\right\rfloor-2\left\lfloor\frac{n}{p^{j}}\right\rfloor\right)
\end{aligned}
$$

Now you'll show on your midterm that $\left\lfloor\frac{2 n}{p^{j}}\right\rfloor-2\left\lfloor\frac{n}{p^{j}}\right\rfloor$ is always 0 or 1 , so in particular

$$
\left\lfloor\frac{2 n}{p^{j}}\right\rfloor-2\left\lfloor\frac{n}{p^{j}}\right\rfloor \leq 1 \quad \forall j .
$$

It follows that

$$
\nu_{p}\left(\binom{2 n}{n}\right) \leq \sum_{1 \leq j \leq \leq \frac{\log 2 n}{\log p}}\left(\left\lfloor\frac{2 n}{p^{j}}\right\rfloor-2\left\lfloor\frac{n}{p^{j}}\right\rfloor\right) \leq \sum_{1 \leq j \leq \frac{\log 2 n}{\log p}} 1 \leq \frac{\log 2 n}{\log p} .
$$

The lemma is proved!

