
Class 7 Notes September 27, 2018

Last time, we proved that

π(2n) − π(n) ≪
n

logn
(1)

for every integer n ≥ 2. We will deduce from this the following upper bound:

Theorem (Chebyshev): π(x) ≪ x
logx for all real numbers x ≥ 2.

Proof: As a first step, we prove

π(x) − π(x2) ≪
x

logx
∀x ≥ 2. (2)

Of course, this looks an awful lot like equation (1) above, and the natural temptation is to

apply it with n = x
2 . The problem is that (1) only applies when n is an integer, so we can’t

set n ∶= x
2 . Instead, we do the next best thing: set n ∶= ⌊x

2
⌋. Then π(x2) = π(n). What can

we say about π(x) in terms of n? Well, by definition of the floor function we have

n ≤ x/2 < n + 1.

Thus 2n ≤ x < 2n + 2, whence π(x) = π(2n) or π(2n + 1); in particular, we deduce

π(x) ≤ π(2n) + 1.

(Why?) Thus we have

π(x) − π(
x

2
) ≤ π(2n) + 1 − π(n) = π(2n) − π(n) + 1 ≤ C

n

logn
+ 1

from (1). (Here C is some positive constant.) Since 1 ≤ n
logn for large enough n, we deduce

that

π(x) − π(
x

2
) ≪

n

logn
.

The final step is to rewrite the right hand side in terms of x. This is where the ≪ symbol

becomes very useful:
n

logn
≤

x/2

log(x/2 − 1)
≪

x

logx
.

Intuitively, this should be clear: when x is large, subtracting 1 from x
2 doesn’t really change

the size by much, and log x/2 = logx − log 2 is roughly the same size as logx. To argue this

more rigorously, observe that for all large x we have log(x/2 − 1) ≥ log x/4 ≥ log
√
x ≫ logx.

Putting all our work together, we’ve proved (2)!

Now we’re ready for the final act: we will prove that

π(x) ≪
x

logx
. (3)
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Alex points out that (2) implies π(x) ≤ π(x/2) + Cx
logx , so if we somehow knew that π(x/2)

were small then we’d be able to prove (3). Unfortunately, it’s not clear how to show that

π(x/2) is small, since this is essentially the same as the assertion we’re trying to prove!

Konnor came up with a different approach. He observed that (2) implies not just a single

inequality, but many different ones:

π(x) − π(x/2) ≤ C ⋅
x

logx

π(
x

2
) − π(

x

4
) ≤ C ⋅

x/2

log x/2

π(
x

4
) − π(

x

8
) ≤ C ⋅

x/4

log x/4

⋮

π(
x

2`
) − π(

x

2`+1
) ≤ C ⋅

x/2`

log x/2`

The absolutely crucial observation here is that the constants C appearing on the right hand

sides are all the same constant. This is the power of the bound (2): that the implicit constant

is independent of x.

The natural next step is to sum all these inequalities up. The sum of all the left hand sides

is super nice: everything cancels apart from the first and last term, and if we take ` large

enough then π( x
2`+1

) becomes very small and we can employ a version of Alex’s idea from

above. The problem now becomes: what can we say about the sum of the right hand sides?

We have a bunch of fractions, each with a different denominator... it’s a mess to add them

up! Fortunately, there’s a trick.

Pick ` such that x
2`+1

≤
√
x < x

2`
. Then

π(x) − π(x/2) ≤ C ⋅
x

logx
≤ C ⋅

x

log
√
x

π(
x

2
) − π(

x

4
) ≤ C ⋅

x/2

log x/2
≤ C ⋅

x/2

log
√
x

π(
x

4
) − π(

x

8
) ≤ C ⋅

x/4

log x/4
≤ C ⋅

x/4

log
√
x

⋮

π(
x

2`
) − π(

x

2`+1
) ≤ C ⋅

x/2`

log x/2`
≤ C ⋅

x/2`

log
√
x

Now the right hand sides all have the same denominator, so we can add them up:

π(x) − π (
x

2`+1
) ≤ C ⋅

x

log
√
x
(1 +

1

2
+

1

4
+⋯) ≤

2Cx
1
2 logx

=
4Cx

logx
.

Prof. Goldmakher Page 2 of 4 Math 313: Intro to Number Theory



Class 7 Notes September 27, 2018

Now we apply Alex’s idea:

π(x) ≤
4Cx

logx
+ π (

x

2`+1
) ≤

4Cx

logx
+ π (

√
x) ≤

4Cx

logx
+
√
x =

x

logx
(4C + o(1)) ≪

x

logx
. ◻

This technique is called “splitting into dyadic blocks”, the ‘dyadic’ comes from 2k to 2k+1.

Theorem (Chebyshev): π(x) ≫ x
logx

Proof: Consider (
2n
n
) once more. Consider its prime factorization:

(
2n

n
) =∏

p

pνp((
2n
n
)) Ô⇒ log (

2n

n
) =∑

p

νp((
2n

n
)) log p = ∑

p≤2n

νp((
2n

n
)) log p.

Lemma: νp((
2n
n
)) ≤

log 2n
log p . [We will prove this below.]

Taking the lemma on faith for now, we have

log (
2n

n
) = ∑

p≤2n

νp((
2n

n
)) log p ≤ ∑

p≤2n

log 2n = log 2n ∑
p≤2n

1 = π(2n) log 2n

which tells us that

π(2n) ≥
log (

2n
n
)

log 2n
. (4)

Thus if we can get a nice lower bound on log (
2n
n
), we’ll find a nice lower bound on π(2n).

Recall that

22n = (1 + 1)2n =
2n

∑
k=0

(
2n

k
) ≤

2n

∑
k=0

(
2n

n
) = (2n + 1)(

2n

n
)

whence (
2n
n
) ≥ 22n

2n+1 . Taking logarithms, we find

log (
2n

n
) ≥ 2n log 2 − log(2n + 1) = n(2 log 2 − o(1)) ≫ n.

Plugging this into (4) gives

π(2n) ≥
log (

2n
n
)

log 2n
≫

n

log 2n
≫

n

logn
.

This is almost what we want; all that’s left to do is to extrapolate from this a more general

bound that holds for real number inputs. Just as we did before, set n ∶= ⌊x
2
⌋, from which it

follows that 2n ≤ x < 2n + 2. In particular,

π(x) ≥ π(2n) ≫
n

logn
≥
x/2 − 1

log x/2
≫
x − 2

logx
=
x(1 − o(1))

logx
≫

x

logx
. ◻

Actually, we’re not quite finished: we need to go back and prove the lemma.
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Proof of Lemma: First note that νp((
2n
n
)) = νp(

(2n)!
(n!)2

) = νp((2n)!) − 2νp(n!). Thus we’re nat-

urally led to the question: what is νp(k!)? To build intuition, we considered an example:

what’s ν2(13!)? We write out the numbers from 1 to 13 and under each number place a ✓

for each factor of 2 that number contributes:

1 2 3 4 5 6 7 8 9 10 11 12 13

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓

✓

Counting the total number of ✓’s, we see that ν2(13!) = 10. But, staring at this diagram, we

see another approach to counting the ✓’s emerge: we count by row. How many ✓’s are in

the first row? There’s one for each even number less than 13, and there are ⌊13
2
⌋ = 6 of these.

What about the second row? We get a second factor of 2 precisely under the multiples of 4,

and there are precisely ⌊13
4
⌋ = 3 of these. To get a third factor of 2 we need multiples of 8,

and there are ⌊13
8
⌋ = 1 of these. At this point we can stop, because there are no multiples of

16 up to 13.

This process generalizes in a straightforward way: for any p and any k we have

νp(k!) =∑
j≥1

⌊
k

pj
⌋ = ∑

1≤j≤N

⌊
k

pj
⌋ for any N ≥

log k

log p
.

Where does this endpoint come from? Well, ⌊k/pj⌋ = 0 whenever pj > k, and pj ≤ k iff j ≤ log k
log p .

Using this formula, we find

νp((
2n

n
)) = νp((2n)!) − 2νp(n!)

= ∑

1≤j≤ log 2n
logp

⌊
2n

pj
⌋ − 2 ∑

1≤j≤ log 2n
logp

⌊
n

pj
⌋

= ∑

1≤j≤ log 2n
logp

(⌊
2n

pj
⌋ − 2 ⌊

n

pj
⌋)

Now you’ll show on your midterm that ⌊2n
pj

⌋ − 2 ⌊ n
pj
⌋ is always 0 or 1, so in particular

⌊
2n

pj
⌋ − 2 ⌊

n

pj
⌋ ≤ 1 ∀j.

It follows that

νp((
2n

n
)) ≤ ∑

1≤j≤ log 2n
logp

(⌊
2n

pj
⌋ − 2 ⌊

n

pj
⌋) ≤ ∑

1≤j≤ log 2n
logp

1 ≤
log 2n

log p
.

The lemma is proved! ◻
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