Modular Arithmetic

Recall: when working with our doomsday algorithm, we wrote things like $4+22=5$ (because 22 days after a Thursday is a Friday) and $4-10=1$ (because 10 days before a Thursday is a Monday). As written, these equations look a little silly, because they're literally false. So we invent notation to express the above sentiment: we'll write

$$
4+22 \equiv 5(\bmod 7) \quad \text { and } \quad 4-10 \equiv 1(\bmod 7) .
$$

Formally we can define this as follows: we say

$$
a \equiv b(\bmod 7)
$$

(read " a is congruent to b modulo 7 ") if and only if $7 \mid b-a$. More generally, we say $a \equiv b(\bmod n)$ if and only if $n \mid b-a$. Using this, we can do addition, subtraction, and multiplication modulo n. For example:

$$
3 \cdot 5 \equiv 1(\bmod 7) \quad \text { and } \quad \frac{1}{3} \equiv 5(\bmod 7) .
$$

There are a couple different ways to think about the latter example. One approach: note that $1 \equiv 15(\bmod 7)$, whence

$$
\frac{1}{3} \equiv \frac{15}{3} \equiv 5(\bmod 7) .
$$

We can also change the denominator, e.g.

$$
\frac{1}{3} \equiv \frac{8}{-4} \equiv-2 \equiv 5(\bmod 7) .
$$

Yet another way to think of this is that $1 / 3$ is the number with the property that when multiplied by 3 yields 1 ; in other words, it's the solution to $3 x \equiv 1(\bmod 7)$. Since $3 \cdot 5 \equiv$ $1(\bmod 7)$, we see that $x \equiv 5(\bmod 7)$ is a solution.

Notice that we can't divide by any number. For instance, $\frac{1}{7}$ is undefined (mod 7), since $7 x \equiv 0(\bmod 7)$ for every x.

To build our intuition, we construct a (mod 7) multiplication table; see below. From the table we make a few observations:

1) Rows n and $7-n$ are reversed order
2) All diagonals are symmetric
3) No number appears twice in any row or column (a.k.a. the Sudoku rule)

Also notice that

$$
2 \equiv 5 \cdot 6(\bmod 7) \Longrightarrow \frac{2}{5} \equiv 6(\bmod 7) .
$$

\times	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Also, $\sqrt{2} \equiv 3$ or $4(\bmod 7)$. We can make this look nicer by observing that $4 \equiv-3(\bmod 7)$, so really $\sqrt{2} \equiv \pm 3(\bmod 7)$. Similarly, $\sqrt{-3} \equiv \pm 2 \equiv 2,5(\bmod 7)$.

Next, for comparison, we construct a multiplication table modulo 6. Since the zero row and column are trivial, we omit them from the table.

\times	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

From this we can make further observations:

1) The sudoku rule only holds in the 1 st and 5 th rows/columns.
2) Division breaks in some cases. For example,

- $2 / 3$ is undefined: there's no multiple of 3 that produces $2(\bmod 6)$;
- $3 / 3$ is not well-defined: there are several possible answers to what $3 / 3$ might be!

To make our 'Sudoku Rule' more rigorous, we prove the following proposition.
Proposition: If $a n \equiv b n(\bmod 7)$ then $a \equiv b(\bmod 7)$ or $n \equiv 0(\bmod 7)$.
Proof: Suppose that $a n \equiv b n(\bmod 7)$. By definition, this means that $7 \mid(b-a) n$, and since 7 is prime we have either $7 \mid b-a$ or $7 \mid n$. By definition again, these are $a \equiv b(\bmod 7)$ and $n \equiv 0(\bmod 7)$ respectively.

Notice that the only property of 7 that we needed was that it was prime. Thus we can generalize:

Proposition 2.0: For any prime p, if $a n \equiv b n(\bmod p)$, then $a \equiv b(\bmod p)$ or $n \equiv 0(\bmod p)$.

Even more generally:
Proposition 3.0: For any $m \geq 2$, if $a n \equiv b n(\bmod m)$ and $\operatorname{gcd}(n, m)=1$ then $a \equiv b(\bmod m)$. Proof: Suppose $a n \equiv b n(\bmod m)$ and $\operatorname{gcd}(n, m)=1$. Then $m \mid(a-b) n$, and since $\operatorname{gcd}(n, m)=$ 1 we deduce $m \mid b-a$, or in other words, $a \equiv b(\bmod m)$.

What does any of this have to do with the sudoku rule? Well, consider the contrapositive: if a and b are distinct $(\bmod m)$, then $a n$ and $b n$ are also distinct $(\bmod m)$ so long as $(m, n)=1$.

Let's return to the multiplication table modulo 7 . Consider the 4 th row of that table:

$$
4,1,5,2,6,3
$$

But of course, each of these is a multiple of 4 modulo 7 :

$$
4 \cdot 1,4 \cdot 2,4 \cdot 3,4 \cdot 4,4 \cdot 5,4 \cdot 6
$$

Multiplying these all together, we deduce that

$$
4 \cdot 1 \cdot 5 \cdot 2 \cdot 6 \cdot 3 \equiv(4 \cdot 1)(4 \cdot 2)(4 \cdot 3)(4 \cdot 4)(4 \cdot 5)(4 \cdot 6)(\bmod 7)
$$

This simplifies to

$$
6!\equiv 4^{6} \cdot 6!(\bmod 7)
$$

Since $\operatorname{gcd}(6!, 7)=1$, our Proposition 3.0 yields $4^{6} \equiv 1(\bmod 7)$. This is an example of Fermat's Little Theorem:

Proposition: For and $a \neq 0(\bmod 7), a^{6} \equiv 1(\bmod 7)$.
Proof: Same as before: multiply all the elements in the a th row of the table and interpret in two different ways.

Once again, 7 isn't all that special - we could do this for any prime.
Fermat's Little Theorem: For any $a \neq 0(\bmod p)$ for a prime $p, a^{p-1} \equiv 1(\bmod p)$.
Proof: By the sudoku rule, we know that the a th row of the multiplication table $(\bmod p)$ contains $p-1$ distinct numbers. However, since 0 definitely can't be in the row and there are precisely $p-1$ distinct numbers left $(\bmod p)$, we see that the a th row is simply a permutation of the numbers $1,2,3, \cdots, p-1$. Thus

$$
(p-1)!=\prod_{n=1}^{p-1} n \equiv \prod_{n=1}^{p-1}(a n) \equiv a^{p-1}(p-1)!(\bmod p)
$$

whence $a^{p-1} \equiv 1(\bmod p)$.

