
Class 9 Notes October 4, 2018

Modular Arithmetic

Recall: when working with our doomsday algorithm, we wrote things like 4+22 = 5 (because

22 days after a Thursday is a Friday) and 4 − 10 = 1 (because 10 days before a Thursday is

a Monday). As written, these equations look a little silly, because they’re literally false. So

we invent notation to express the above sentiment: we’ll write

4 + 22 ≡ 5 (mod 7) and 4 − 10 ≡ 1 (mod 7).

Formally we can define this as follows: we say

a ≡ b (mod 7)

(read “a is congruent to b modulo 7”) if and only if 7 ∣ b − a. More generally, we say

a ≡ b (mod n) if and only if n ∣ b − a. Using this, we can do addition, subtraction, and

multiplication modulo n. For example:

3 ⋅ 5 ≡ 1(mod 7) and 1
3 ≡ 5 (mod 7).

There are a couple different ways to think about the latter example. One approach: note

that 1 ≡ 15 (mod 7), whence
1

3
≡ 15

3
≡ 5 (mod 7).

We can also change the denominator, e.g.

1

3
≡ 8

−4
≡ −2 ≡ 5 (mod 7).

Yet another way to think of this is that 1/3 is the number with the property that when

multiplied by 3 yields 1; in other words, it’s the solution to 3x ≡ 1 (mod 7). Since 3 ⋅ 5 ≡
1 (mod 7), we see that x ≡ 5 (mod 7) is a solution.

Notice that we can’t divide by any number. For instance, 1
7 is undefined (mod 7), since

7x ≡ 0 (mod 7) for every x.

To build our intuition, we construct a (mod 7) multiplication table; see below. From the

table we make a few observations:

1) Rows n and 7 − n are reversed order

2) All diagonals are symmetric

3) No number appears twice in any row or column (a.k.a. the Sudoku rule)

Also notice that

2 ≡ 5 ⋅ 6(mod 7) Ô⇒ 2
5 ≡ 6(mod 7).
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× 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Also,
√

2 ≡ 3 or 4 (mod 7). We can make this look nicer by observing that 4 ≡ −3 (mod 7),

so really
√

2 ≡ ±3 (mod 7). Similarly,
√
−3 ≡ ±2 ≡ 2,5 (mod 7).

Next, for comparison, we construct a multiplication table modulo 6. Since the zero row and

column are trivial, we omit them from the table.

× 1 2 3 4 5

1 1 2 3 4 5

2 2 4 0 2 4

3 3 0 3 0 3

4 4 2 0 4 2

5 5 4 3 2 1

From this we can make further observations:

1) The sudoku rule only holds in the 1st and 5th rows/columns.

2) Division breaks in some cases. For example,

● 2/3 is undefined: there’s no multiple of 3 that produces 2 (mod 6);

● 3/3 is not well-defined: there are several possible answers to what 3/3 might be!

To make our ‘Sudoku Rule’ more rigorous, we prove the following proposition.

Proposition: If an ≡ bn (mod 7) then a ≡ b (mod 7) or n ≡ 0 (mod 7).

Proof: Suppose that an ≡ bn (mod 7). By definition, this means that 7 ∣ (b − a)n, and since

7 is prime we have either 7 ∣ b − a or 7 ∣ n. By definition again, these are a ≡ b (mod 7) and

n ≡ 0 (mod 7) respectively. ◻

Notice that the only property of 7 that we needed was that it was prime. Thus we can

generalize:

Proposition 2.0: For any prime p, if an ≡ bn (mod p), then a ≡ b (mod p) or n ≡ 0 (mod p).
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Even more generally:

Proposition 3.0: For any m ≥ 2, if an ≡ bn (mod m) and gcd(n,m) = 1 then a ≡ b (mod m).

Proof: Suppose an ≡ bn (mod m) and gcd(n,m) = 1. Then m ∣ (a−b)n, and since gcd(n,m) =
1 we deduce m ∣ b − a, or in other words, a ≡ b (mod m). ◻

What does any of this have to do with the sudoku rule? Well, consider the contrapositive: if

a and b are distinct (mod m), then an and bn are also distinct (mod m) so long as (m,n) = 1.

Let’s return to the multiplication table modulo 7. Consider the 4th row of that table:

4,1,5,2,6,3.

But of course, each of these is a multiple of 4 modulo 7:

4 ⋅ 1,4 ⋅ 2,4 ⋅ 3,4 ⋅ 4,4 ⋅ 5,4 ⋅ 6.

Multiplying these all together, we deduce that

4 ⋅ 1 ⋅ 5 ⋅ 2 ⋅ 6 ⋅ 3 ≡ (4 ⋅ 1)(4 ⋅ 2)(4 ⋅ 3)(4 ⋅ 4)(4 ⋅ 5)(4 ⋅ 6) (mod 7).

This simplifies to

6! ≡ 46 ⋅ 6! (mod 7).

Since gcd(6!,7) = 1, our Proposition 3.0 yields 46 ≡ 1 (mod 7). This is an example of Fermat’s

Little Theorem:

Proposition: For and a ≢ 0 (mod 7), a6 ≡ 1 (mod 7).

Proof: Same as before: multiply all the elements in the ath row of the table and interpret in

two different ways.

Once again, 7 isn’t all that special – we could do this for any prime.

Fermat’s Little Theorem: For any a ≢ 0 (mod p) for a prime p, ap−1 ≡ 1 (mod p).

Proof: By the sudoku rule, we know that the ath row of the multiplication table (mod p)

contains p−1 distinct numbers. However, since 0 definitely can’t be in the row and there are

precisely p−1 distinct numbers left (mod p), we see that the ath row is simply a permutation

of the numbers 1,2,3,⋯, p − 1. Thus

(p − 1)! =
p−1

∏
n=1

n ≡
p−1

∏
n=1

(an) ≡ ap−1(p − 1)! (mod p)

whence ap−1 ≡ 1 (mod p). ◻
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