Recall the definition of the Euler totient function: $\varphi(n)=\left|\mathbb{Z}_{n}^{\times}\right|$. Last time, we proved that $\varphi\left(p^{k}\right)=(p-1) p^{k-1}$ and stated the following:
Theorem: φ is multiplicative, i.e. $\varphi(m n)=\varphi(m) \varphi(n)$ whenever $(m, n)=1$.
Proof idea: $\varphi(m n)=\left|\mathbb{Z}_{m n}^{\times}\right|$and $\varphi(m) \varphi(n)=\left|\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}\right|$. Thus if we can find a bijective map $f: \mathbb{Z}_{m n}^{\times} \rightarrow \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$, this will prove that φ is multiplicative.

Recall: a map $f: X \rightarrow Y$ is bijective if and only if for every $y \in Y$, there is a unique $x \in X$ such that $f(x)=y$. Most commonly this is proved in two steps: first one proves that f is injective, and then that it's surjective. For f to be injective means that for all $y \in Y$, there is at most one $x \in X$ such that $f(x)=y$. For f to be surjective means that for every $y \in Y$ there exists at least one $x \in X$ such that $f(x)=y$. Thus if f is simultaneously injective and surjective we see that f must be bijective.

Our goal for proving the theorem is to come up with a bijection mapping $\mathbb{Z}_{m n}^{\times} \rightarrow \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$. The first problem is to come up with any map. Here are a few we came up with:

Map		Issues	
x	$\mapsto(1,1)$		neither injective nor surjective
x	$\mapsto\left(\frac{x}{n}, \frac{x}{m}\right)$		an interesting candidate, so long as division by m and n is ok
$x y$	$\leftrightarrow(x, y)$		$x y$ might not be in $\mathbb{Z}_{m n}^{\times}$
$x=\prod p_{i}^{e_{i}} \mapsto\left(\prod_{(p, m)=1} p_{i}^{e_{i}}, \prod_{(p, n)=1} p_{i}^{e_{i}}\right)$		factorization into primes isn't unique in $\mathbb{Z}_{m n}^{\times}!$	
x	$\mapsto(x(\bmod m), x(\bmod n))$		another interesting candidate

We'll explore the last of these. For ease of reference, and to honor the originator of the idea (Ben), let's give this function a name:

$$
\begin{aligned}
\beta: \mathbb{Z}_{m n}^{\times} & \rightarrow \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times} \\
x & \rightarrow(x(\bmod m), x(\bmod n))
\end{aligned}
$$

For example: $m=3$ and $n=5$. Then $\beta(7)=(1,2)$.
Is β well-defined? We must check
(i) that any $x \in \mathbb{Z}_{m n}^{\times}$gets mapped to $\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$, and
(ii) that whenever $x \equiv y(\bmod m n)$ we have $f(x)=f(y)$.

First we check (i):

$$
x \in \mathbb{Z}_{m n}^{\times} \Longrightarrow(x, m n)=1 \Longrightarrow(x, m)=1 .
$$

By problem 3.5, we deduce that $x(\bmod m) \in \mathbb{Z}_{m}^{\times}$; similarly, $x(\bmod n) \in \mathbb{Z}_{n}^{\times}$. Thus, we conclude that $\beta(x) \in \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$as claimed.

Next, we verify (ii).

$$
x \equiv y(\bmod m n) \Longrightarrow x=y+k m n \Longrightarrow(x \equiv y(\bmod m) \quad \text { and } \quad x \equiv y(\bmod n)) .
$$

Thus, $\beta(x)=\beta(y)$ whenever $x \equiv y(\bmod m n)$.
Thus we've shown that β is well-defined (i.e. doesn't misbehave). Now let's show what we really want: that it's a bijection.

Claim: β is a injective.
Proof: Suppose $\beta(x)=\beta(y)$. Then $x \equiv y(\bmod m)$ and $x \equiv y(\bmod n)$, or in other words, $m \mid x-y$ and $n \mid x-y$. But $(m, n)=1$, whence $m n \mid x-y$. This implies $x \equiv y(\bmod m n)$, which in turn yields $x=y$ (since $\left.x, y \in \mathbb{Z}_{m n}^{\times}\right)$.

To recap, we just proved that distinct inputs produce distinct outputs, which is the same as saying β is injective. We're halfway there!

Claim: β is surjective.
Proof: Given $(a, b) \in \mathbb{Z}_{n}^{\times} \times \mathbb{Z}_{m}^{\times}$we want to show that there exists $x \in \mathbb{Z}_{m n}^{\times}$such that $\beta(x)=(a, b)$. We will do this in three steps.

Step 1: Given $(a, b) \in \mathbb{Z}_{n}^{\times} \times \mathbb{Z}_{m}^{\times}$, we construct an $x \in \mathbb{Z}$ such that $x(\bmod m)=a$ and $x(\bmod n)=b$.

Inspired by an idea of Miranda, we consider integers of the form

$$
x=(\cdots) m+(\cdots) n .
$$

How can we insert integers in place of the ellipses to force $x(\bmod m)=a$? Well, the first term disappears, and if we want the second term to produce a we simply put $x=(\cdots) m+(a \bar{n}) n$; here $\bar{n}:=\frac{1}{n}(\bmod m)$. We make a similar choice for the coefficient of m to get

$$
x=(b \bar{m}) m+(a \bar{n}) n .
$$

We've done it!

Step 2: We prove that $(x, m n)=1$.

Suppose $p \mid(x, m n)$. Then $p \mid m n$, whence it must divide one of m or n; WLOG say $p \mid m$. But then from our definition of x we deduce $p \mid a \bar{n} n$, which contradicts the fact that all three of the numbers $a, \bar{n}, n \in \mathbb{Z}_{m}^{\times}$.

Step 3: Win.
By problem 3.5, $x(\bmod m n) \in \mathbb{Z}_{m n}^{\times}$. Moreover,

$$
x(\bmod m n) \equiv x(\bmod m) \quad \text { and } \quad x(\bmod m n) \equiv x(\bmod n)
$$

whence $\beta(x(\bmod m n))=(a, b)$ as desired.
Combining these three steps yields that β is surjective. Thus, we've proved that β is bijective. But this means that $\mathbb{Z}_{m n}^{\times}$and $\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$have the same number of elements, whence

$$
\varphi(m n)=\varphi(m) \varphi(n)
$$

whenever $(m, n)=1$ as claimed.
To see this approach in action, let's consider an example. Take $m=3$ and $n=5$. Then $\bar{m}=2$ and $\bar{n}=2$, whence $x=6 b+10 a$ has the desired property that

$$
x \equiv a(\bmod 3) \quad \text { and } \quad x \equiv b(\bmod 5) .
$$

Thus the number $6 b+10 a(\bmod 15)$ lives in \mathbb{Z}_{15}^{\times}and gets mapped to (a, b) by β.

