Recall the definition of the Euler totient function: $\varphi(n) = |\mathbb{Z}_n^{\times}|$. Last time, we proved that $\varphi(p^k) = (p-1)p^{k-1}$ and stated the following:

<u>Theorem</u>: φ is multiplicative, i.e. $\varphi(mn) = \varphi(m)\varphi(n)$ whenever (m, n) = 1.

<u>Proof idea</u>: $\varphi(mn) = |\mathbb{Z}_{mn}^{\times}|$ and $\varphi(m)\varphi(n) = |\mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}|$. Thus if we can find a bijective map $f: \mathbb{Z}_{mn}^{\times} \to \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$, this will prove that φ is multiplicative.

Recall: a map $f: X \to Y$ is *bijective* if and only if for every $y \in Y$, there is a unique $x \in X$ such that f(x) = y. Most commonly this is proved in two steps: first one proves that f is injective, and then that it's surjective. For f to be *injective* means that for all $y \in Y$, there is at most one $x \in X$ such that f(x) = y. For f to be *surjective* means that for every $y \in Y$ there exists at least one $x \in X$ such that f(x) = y. Thus if f is simultaneously injective and surjective we see that f must be bijective.

Our goal for proving the theorem is to come up with a bijection mapping $\mathbb{Z}_{mn}^{\times} \to \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$. The first problem is to come up with any map. Here are a few we came up with:

Map	Issues
$x \mapsto (1,1)$	neither injective nor surjective
$x \mapsto \left(\frac{x}{n}, \frac{x}{m}\right)$	an interesting candidate, so long as division by m and n is ok
$xy \nleftrightarrow (x,y)$	xy might not be in \mathbb{Z}_{mn}^{\times}
$x = \prod p_i^{e_i} \mapsto \left(\prod_{(p,m)=1} p_i^{e_i}, \prod_{(p,n)=1} p_i^{e_i}\right)$	factorization into primes isn't unique in \mathbb{Z}_{mn}^{\times} !
$x \mapsto (x \pmod{m}, x \pmod{n})$	another interesting candidate

We'll explore the last of these. For ease of reference, and to honor the originator of the idea (Ben), let's give this function a name:

$$\beta : \mathbb{Z}_{mn}^{\times} \to \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$$
$$x \to (x \pmod{m}, x \pmod{n})$$

For example: m = 3 and n = 5. Then $\beta(7) = (1, 2)$.

Is β well-defined? We must check

(i) that any $x \in \mathbb{Z}_{mn}^{\times}$ gets mapped to $\mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$, and

(ii) that whenever $x \equiv y \pmod{mn}$ we have f(x) = f(y). First we check (i):

$$x \in \mathbb{Z}_{mn}^{\times} \implies (x, mn) = 1 \implies (x, m) = 1.$$

By problem **3.5**, we deduce that $x \pmod{m} \in \mathbb{Z}_m^{\times}$; similarly, $x \pmod{n} \in \mathbb{Z}_n^{\times}$. Thus, we conclude that $\beta(x) \in \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$ as claimed.

Next, we verify (ii).

$$x \equiv y \pmod{mn} \implies x = y + kmn \implies (x \equiv y \pmod{m} \text{ and } x \equiv y \pmod{n}).$$

Thus, $\beta(x) = \beta(y)$ whenever $x \equiv y \pmod{mn}$.

Thus we've shown that β is well-defined (i.e. doesn't misbehave). Now let's show what we really want: that it's a bijection.

<u>Claim:</u> β is a injective.

<u>Proof:</u> Suppose $\beta(x) = \beta(y)$. Then $x \equiv y \pmod{m}$ and $x \equiv y \pmod{n}$, or in other words, $m \mid x - y$ and $n \mid x - y$. But (m, n) = 1, whence $mn \mid x - y$. This implies $x \equiv y \pmod{mn}$, which in turn yields $x \equiv y \pmod{x, y \in \mathbb{Z}_{mn}^{\times}}$.

To recap, we just proved that distinct inputs produce distinct outputs, which is the same as saying β is injective. We're halfway there!

<u>Claim:</u> β is surjective.

<u>Proof:</u> Given $(a, b) \in \mathbb{Z}_n^{\times} \times \mathbb{Z}_m^{\times}$ we want to show that there exists $x \in \mathbb{Z}_{mn}^{\times}$ such that $\beta(x) = (a, b)$. We will do this in three steps.

<u>Step 1:</u> Given $(a,b) \in \mathbb{Z}_n^{\times} \times \mathbb{Z}_m^{\times}$, we construct an $x \in \mathbb{Z}$ such that $x \pmod{m} = a$ and $x \pmod{n} = b$.

Inspired by an idea of Miranda, we consider integers of the form

$$x = (\cdots)m + (\cdots)n.$$

How can we insert integers in place of the ellipses to force $x \pmod{m} = a$? Well, the first term disappears, and if we want the second term to produce a we simply put $x = (\cdots)m + (a\overline{n})n$; here $\overline{n} := \frac{1}{n} \pmod{m}$. We make a similar choice for the coefficient of m to get

$$x = (b\overline{m})m + (a\overline{n})n.$$

We've done it!

Step 2: We prove that (x, mn) = 1.

Suppose $p \mid (x, mn)$. Then $p \mid mn$, whence it must divide one of m or n; WLOG say $p \mid m$. But then from our definition of x we deduce $p \mid a\overline{n}n$, which contradicts the fact that all three of the numbers $a, \overline{n}, n \in \mathbb{Z}_m^{\times}$.

Step 3: Win.

By problem **3.5**, $x \pmod{mn} \in \mathbb{Z}_{mn}^{\times}$. Moreover,

 $x \pmod{mn} \equiv x \pmod{m}$ and $x \pmod{mn} \equiv x \pmod{n}$

whence $\beta(x \pmod{mn}) = (a, b)$ as desired.

Combining these three steps yields that β is surjective. Thus, we've proved that β is bijective. But this means that \mathbb{Z}_{mn}^{\times} and $\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$ have the same number of elements, whence

$$\varphi(mn) = \varphi(m)\varphi(n)$$

whenever (m, n) = 1 as claimed.

To see this approach in action, let's consider an example. Take m = 3 and n = 5. Then $\overline{m} = 2$ and $\overline{n} = 2$, whence x = 6b + 10a has the desired property that

$$x \equiv a \pmod{3}$$
 and $x \equiv b \pmod{5}$.

Thus the number $6b + 10a \pmod{15}$ lives in \mathbb{Z}_{15}^{\times} and gets mapped to (a, b) by β .