Today we explore solving power congruences. We warm up with a bunch of examples:

1. $x^{18} \equiv 4(\bmod 17)$.

Chris: By Fermat's Little Theorem, we have $x^{16} \equiv 1(\bmod 17)$ or $x \equiv 0(\bmod 1) 7$. The latter clearly can't be a solution to the given congruence, so we deduce that $x^{18} \equiv x^{2} \equiv 4(\bmod 17)$, whence $x \equiv \pm 2(\bmod 17)$.
2. $x^{3} \equiv 4(\bmod 17)$. We could just check every possible solution, or...

Ben: $x^{3} \equiv 4 \equiv-64(\bmod 17)$ so then $x \equiv-4(\bmod 17)$
Akhil + Alex: From before, $(\pm 2)^{18} \equiv 4(\bmod 17)$. So then $\left((\pm 2)^{6}\right)^{3} \equiv 4(\bmod 17)$, so $x=(\pm 2)^{6} \equiv 13(\bmod 17)$.
Max: $x^{3} \equiv 4(\bmod 17) \Longrightarrow x^{6} \equiv 16(\bmod 17) \equiv-1(\bmod 17) \Longrightarrow x^{18} \equiv\left(x^{6}\right)^{3} \equiv$ $(-1)^{3}=-1 \equiv 16(\bmod 17)$ so $x \equiv \pm 4$. But then +4 doesn't work, so $x \equiv-4 \equiv$ $13(\bmod 17)$.

Question (Kimberly): Why isn't $x^{18} \equiv x^{1}(\bmod 17)$? Because we can't add/subtract 17 in the exponent, only in coefficients and constants. But in exponents, you can add/subtract by $\varphi(n)$.

We return to example 2 and point out there's yet another approach we can take. Max found that by raising both sides to the 6th, we obtain a congruence for x^{2}, which is easier to solve. But what we really want is x, not x^{2}. Is there some other power we can raise both sides of the congruence to to get x ? Yes!

$$
x \equiv x^{32} \cdot x \equiv x^{33} \equiv\left(x^{3}\right)^{11} \equiv 4^{11}(\bmod 17) .
$$

But notice that $4^{2} \equiv-1(\bmod 17)$, so $4^{11} \equiv(-1)^{5} 4 \equiv-4(\bmod 17)$.
3. $x^{5} \equiv 4(\bmod 17)$.

Konnor+Oliver: Raise both sides to the 13th power:

$$
x^{5 \cdot 13}=x^{65}=x^{1+64} \equiv x \equiv 4^{13}(\bmod 17) .
$$

And $4^{13}=\left(4^{2}\right)^{6} \cdot 4=(-1)^{6} \cdot 4 \equiv 4(\bmod 17)$, thus $x \equiv 4(\bmod 17)$.

Question (Alex): Is there always a solution to $x^{a} \equiv b(\bmod p) ?$
4. $x^{2} \equiv 6(\bmod 7)$

Miranda: Cube both sides:

$$
1 \equiv\left(x^{2}\right)^{3} \equiv 6^{3} \equiv(-1)^{3}=-1(\bmod 7) .
$$

Aaah! Contradiction! Right away this tells us there can't be a solution to this congruence. The issue with our approach is that 2 and $7-1=6$ are not relatively prime, so we cannot find a good exponent (i.e. one that produces just x).
5. $x^{5} \equiv 11(\bmod 35)$.

Mia: $x^{\varphi(35)} \equiv 1(\bmod 35)$, and $\varphi(35)=\varphi(5 \cdot 7)=(5-1)(7-1)=24$, so $x^{24} \equiv 1(\bmod 35)$. Jeff: Raise both sides to the 5th:

$$
\left(x^{5}\right)^{5}=x^{1+24} \equiv x \equiv 11^{5}(\bmod 35)
$$

It therefore remains only to compute $11^{5}(\bmod 35)$:

$$
11^{5} \equiv 11 \cdot\left(11^{2}\right)^{2} \equiv 11 \cdot(105+16)^{2} \equiv 11 \cdot 16^{2} \equiv 11 \cdot(245+11) \equiv 11^{2} \equiv 16(\bmod 35)
$$

As a result, $x \equiv 16(\bmod 35)$.

Question (Kimberly): Okay, but how do you find the right exponent to raise both sides to? What is the formulaic/general approach?

The General Approach: Given $x^{e} \equiv y(\bmod N)$. Want to solve for x.
Step 0: Reduce $e \bmod \varphi(N)$.*
Step 1: Want to find an exponent, d, such that $d e \equiv 1(\bmod \varphi(N))$.
(Miranda) If $(e, \varphi(N))=1$, by Bézout's Theorem there exists some k, d such that $e d+k \varphi(N)=1$ so then $e d \equiv 1(\bmod \varphi(N))$. We can use the Euclidean Algorithm to solve for d.

Step 2: Then $x^{d e} \equiv x^{1+k \varphi(N)} \equiv x \equiv y^{d}(\bmod N)$.
Step 3: Reduce $y^{d}(\bmod N)$. How do we do this efficiently? First compute, $y^{2}(\bmod N)$. Then compute $y^{4}=\left(y^{2}\right)^{2}(\bmod N)$, by squaring the previous result. Square again to get y^{8}, etc. Now we can express d in binary (i.e. as a sum of distinct powers of 2), which means we can express y^{d} in terms of the powers of y we'd computed. Moreover, this process takes $\ll \log d$ computations.

Examples of binary notation: $13=8+4+1.168=128+32+8$. Can do this by always taking the largest power of 2 possible (greedy algorithm).
*Note that for this process to be guaranteed to work, we need $(e, \varphi(N))=1$. However, as Konnor pointed out, even when this doesn't happen (as in Example 1) the method still might lead to a solution!

Next time we will see how this is used to great effect in the RSA encryption algorithm.

