Class 14 Notes October 25, 2018

Encryption:
Alice and Bob want to communicate state secrets over the internet. But €vil Eve is listening

in. How can Alice and Bob communicate without Eve understanding? Alice and Bob need
to use a code.

Examples of Codes:

1 Caesar cipher: To encode, replace a letter by the letter k letters past it. So for k = 3,

ard,br~e, .. y~b, 2z~ c. To decode, shift by —k places. But there’s a problem
with this method of encryption: it’s particularly easy to crack! Indeed, Eve just tries
all 25 shifts.

2 Substitution cipher: Alice and Bob agree on a dictionary replacing each letter with a

different letter (i.e. a bijection from [a-z] to [a-z]). Oliver noticed that a bijection is
necessary, because to decode we’ll need to use a reverse dictionary (i.e. the inverse of
the bijection). Kimberly pointed out that the Caesar cipher is an example of this. To
encode a message, simply pass it through the dictionary. If a~f and b—a and d~g,
then ‘a bad dad’ becomes ‘f afg fgf’. We could be even trickier and also include spaces
and punctuation as part of the alphabet, and then scramble it too. To decode we use
the dictionary in reverse. Unfortunately, it turns out that this is still unsecure: Eve
can use frequency analysis to crack it. For example, in English, ‘e’ is the most common

letter, followed by ‘t’, etc. We can also look at two letter pairs (e.g. ‘th’ or ‘sh’).

3 AES is a current method of symmetric encryption, that seems to be secure. Symmetric
in this context means that Alice and Bob have to share a common key (just as in 1
and 2) that is used to both encode and decode.

For any symmetric cipher to work, Alice and Bob need to have the same key. How do
they agree on a key? One method is the RSA algorithm, invented by Rivest, Shamir, and
Adelman in 1977. The main idea is something like a ‘locker” where only Bob has access, so
Alice can communicate with Bob securely. The main idea here is that, unlike a symmetric
cipher in which the key also plays the role of the lock, in RSA the key and the lock are
distinct.

How RSA Works:
Step 0: Bob (secretly) generates two gigantic primes, p and ¢ (here ‘gigantic’ means 100

digits each, say).
Step 1: Bob computes N := pq. He then publicly announces both N and a positive integer e
(to be discussed below).

Prof. Goldmakher Page 1 of 3 Math 313: Intro to Number Theory



Class 14 Notes October 25, 2018

Step 2: Alice writes her message in the form of a positive integer, X (for example A=010,
B=020, Z=260, etc; the method of turning text into a number is not kept secret from Eve).
Alice then computes Y := X¢ (mod N), and sends Y to Bob.

Step 3: Bob receives Y, and wants to find X. In other words, Bob needs to solve the con-
gruence X¢ =Y (mod N). We know how to do this! Bob simply finds d := 1/e (mod ¢(N)),
and then computes Y¢= X¢ = X (mod N).

Mia asked the fundamental question: Why can Bob do this but not Eve?

Answer 1: No one knows how to solve X¢ =Y (mod N) without finding d.

Answer 2: No one knows how to compute d without knowing @(N).

Answer 3: No one knows how to compute ¢(N) without knowing its prime factorization (i.e.

p and q).
Since Bob is the only person who knows the factorization of NV, Eve cannot figure out X.

Note that all the above answers, taken literally, are false: we can solve any of them by brute
force. But for numbers with, say, 200 digits, this is computationally infeasible (i.e. would

take on the order of a century, even with powerful computers).

Issues in implementing RSA:

1. Bob needs to be able to find enormous p and ¢, otherwise factorization will be possible.
Even though it seems to be a hard problem to factor large numbers, it turns out to
be possible to quickly check whether a given large number is prime. Moreover, primes
are frequent enough that, after testing out a reasonably small number of 100-digit
numbers, one will almost certainly stumble upon a prime. Thus, in practice, one can

generate enormous primes fairly easily.

2. X needs to be less than N, otherwise Alice’s message will be corrupted as soon as it’s
reduced (mod N). This is easy to arrange, though: Alice and Bob can publicly agree
on the length of the key Alice will send to Bob, and then Bob simply chooses p and ¢
large enough to guarantee that the key is smaller than N.

3. Bob’s approach to decrypting Alice’s message crucially uses that X¥(V) =1 (mod N).
But we only know this in the case that X € Z}. What if X isn’t relatively prime to
N?

Amazingly, RSA still works even if this happens. To see why this is, first observe that,
since we can assume (thanks to point 2 above) that X # 0 (mod N), we must have
exactly one of p or ¢ divides X. Without loss of generality, say p | X but ¢ + X. As

Prof. Goldmakher Page 2 of 3 Math 313: Intro to Number Theory



Class 14 Notes October 25, 2018

before, we have Y4 = X - Xk¢(N) (mod N). But looking at this (mod ¢) we have
XkeN) = xk(P-D(-1) = 1 (mod g)
by Fermat’s Little Theorem. Thus we can write X*¢(V) = 1 + /¢, whence
Yé=X(1+/g) =X +Xlqg=X (mod N),
since p | X. Thus we see that RSA still works even in the unlikely event that X ¢ Z,.

4. For the decryption to work we require e and ¢(N) to be coprime. But Bob knows
©(N) and gets to pick e, so he can simply choose an e to satisfy this.

5. To prevent a brute-force attack by Eve, Bob must make sure that d isn’t too small.
(Otherwise, Eve could just raise Y to a bunch of powers and see whether any of them
work as a key.) Thus to pick e, Bob starts by (secretly) picking a huge d relatively
prime to ¢(N), and then publicly announces e := 1/d (mod ¢(NV)).

Thus we see that RSA is a fairly straightforward application of our algorithm for solving
power congruences. The main take-away is this: if you can find some problem such that

e it’s very hard to find a solution to the problem, but

e it’s very easy to verify whether a proposed solution is legitimate,

then you can probably come up with some encryption scheme based on that. In the case of
RSA, the problem we'’re solving is that of a power congruence (mod pq); given p and ¢ it’s
easy to solve, but given only the product pq it seems to be difficult to solve.

Recall that last time, we had some trouble solving some power congruences, in particular

T2

= a (mod n); the issue is that no matter what power we raise x? to, the exponent will
always be even, and will therefore never be congruent to 1 (mod ¢(n)). So how do we solve

quadratic congruences? This will be our next topic of exploration.

Prof. Goldmakher Page 3 of 3 Math 313: Intro to Number Theory



