
Class 15 Notes October 29, 2018

Recall that our method of solving power congruences failed for quadratic congruences, i.e.

congruences of the form x2 ≡ a (mod n). How do we solve such a congruence? It turns out

that no one knows an efficient way to accomplish this for a general n.1 Following Pólya’s

dictum – If you can’t solve a problem, find an easier version of the problem that you can

solve – we turn to a more basic question:

Question: Given a (mod p), can we efficiently predict whether or not the congruence x2 ≡

a (mod p) has a solution? Or equivalently: given p, can we predict the perfect squares are

modulo p?

For example, what are the perfect squares modulo 7? Apart from the trivial 0, we have

12 = 1, 22 = 4, and 32 ≡ 2. Note that we won’t get any other squares, since 42 ≡ (−3)2 = 32,

etc. Thus modulo 7 we have:

Perfect Squares: 1, 2, 4

Non-squares: 3, 5, 6

Modulo 11:

Perfect Squares: 1, 3, 4, 5, 9

Non-squares: 2, 6, 7, 8, 10

Modulo 13:

Perfect Squares: 1, 3, 4, 9, 10, 12

Non-squares: 2, 5, 6, 7, 8, 11

Jacob’s Question: Are there as many (nonzero) squares as non-squares? This inspired

Conjecture (Akhil): There are exactly p−1
2 perfect squares and p−1

2 non-squares for p ≥ 3.

Jeff: It’s enough to show that if a2 ≡ b2 (mod p) then a ≡ ±b (mod p), since then all the

squares {12,22, . . . , (p−12 )
2
} consists of distinct numbers (mod p).

Proposition: If a2 ≡ b2 (mod p) then a ≡ ±b (mod p).

Proof: Since a2 ≡ b2 (mod p), then p ∣ a2 − b2 = (a + b)(a − b). So either p ∣ a + b or p ∣ a − b,

whence a ≡ ±b (mod p). ◻

Thus,

∣{a ∈ Z×p ∶ a ≡ x2 (mod p), x ≠ 0}∣ = ∣{12,22, . . . , (p−12 )
2

(mod p)}∣ = p−1
2

since each square in the set is distinct. As a result, all the other elements are non-squares,

so there are p−1
2 of them. This proves Akhil’s Conjecture.

1The Tonelli-Shanks algorithm gives a way to efficiently solve quadratic congruences modulo a prime

power. However, solving a quadratic congruence (mod pq) is equivalent to factoring pq, a fact that’s at the

heart of the Rabin cryptosystem.
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We’ve thus found our way into the problem of quadratic congruences: we’ve successfully

solved the problem of counting the number of squares (mod p). Next we tackle the harder

question: given a ∈ Z×p , is a a perfect square (mod p)? Suppose a ≡ x2 (mod p). Konnor

suggested raising both sides to the p−1, which yields 1 ≡ 1 (mod p); true but not particularly

illuminating. However, this inspired Jacob to suggest raising to p−1
2 , which gives us:

Lemma: If a is a square (mod p), then a
p−1
2 ≡ 1 (mod p).

Could this happen if a is not a perfect square? Note that if the converse of the Lemma is

true, then this would produce a nice test for whether a given a ∈ Z×p is a perfect square (mod

p): simply compute a
p−1
2 (mod p). Miranda points out that since (a

p−1
2 )

2

≡ 1 (mod p), we

must have a
p−1
2 ≡ ±1 (mod p) no matter what a is.

Example: modulo 11

Consider the non-squares from mod 11 from before. Here (p − 1)/2 = 5.

25 ≡ −1 (mod 11)

65 = 25 ⋅ 35 ≡ −1 (mod 11) because 3 is a perfect square, so 35 ≡ 1.

85 = (23)5 = (25)3 ≡ (−1)3 ≡ −1 (mod 11).

Theorem: If a is not a perfect square (mod p), then a(p−1)/2 ≡ −1 (mod p).

Proof: Note that every a ∈ Z×p is a root of the polynomial xp−1−1 ≡ 0 (mod p). Thus, xp−1−1

has exactly p − 1 roots (mod p). Consider the factorization of this polynomial:

xp−1 − 1 = (x
p−1
2 − 1)(x

p−1
2 + 1) .

Notice that each of the polynomials (x
p−1
2 ± 1) has at most p−1

2 roots (mod p) by problem 6.4.

But together they have exactly p−1 roots (mod p). Thus we conclude that each of (x
p−1
2 ± 1)

must have precisely p−1
2 roots (mod p). We know that the perfect squares, of which there

are p−1
2 , are a set of solutions of x

p−1
2 − 1 (mod p). Thus all other elements of Z×p , i.e. the

non-squares, must be roots of x
p−1
2 + 1 (mod p). But this means that a

p−1
2 + 1 ≡ 0 (mod p)

whenever a ∈ Z×p isn’t a perfect square (mod p), which proves the theorem. ◻

This result motivates the following

Definition: (the Legendre symbol) Given a ∈ Z, we set

(
a

p
) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

+1 if a ≡ ◻ (mod p) and a /≡ 0 (mod p)

−1 if a ≢ ◻ (mod p)

0 a ≡ 0 (mod p)
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The symbol (ap) is pronounced “a on p”.

Examples:

(
2

7
) = 1 (

10

7
) = −1 (

−14

7
) = 0

As Jeff observed, immediately from our work above we deduce

Proposition (Euler’s Criterion):

(
a

p
) ≡ a

p−1
2 (mod p).

Properties of the Legendre Symbol:

(1) a ≡ b (mod p) Ô⇒ (ap) = (
b
p).

(2) The function ( ⋅p) is completely multiplicative, i.e. (abp ) = (
a
p) (

b
p) ∀a, b ∈ Z.

Property (1) is easy to prove, and is left as an exercise. Property (2) is deceptively simple-

looking. In some cases it’s trivial: if both a and b are perfect squares (mod p), then it’s not

hard to see that ab must also be a perfect square (mod p). But property (2) also implies a

much weirder fact: that if neither a nor b are perfect squares (mod p), then ab must be a

perfect square (mod p). This is not at all obvious, but follows immediately from property

(2). This demonstrates that there’s really something non-trivial about this property of the

Legendre symbol. We prove this property now. Note that the proof looks easy, but this is

only because it builds on our previous work!

Proof of 2 (Miranda): By Euler’s Criterion,

(
a

p
)(

b

p
) ≡ a

p−1
2 b

p−1
2 = (ab)

p−1
2 ≡ (

ab

p
) (mod p).

Thus (ap) (
b
p) ≡ (

ab
p ) (mod p), but this isn’t quite what we want – we claim actual equality

of the two quantities. Fortunately, this isn’t hard to deduce: since −1 ≤ ( ⋅p) ≤ 1, we see

that ∣(ap) (
b
p) − (

ab
p ) (mod p)∣ ≤ 2. But also, we just proved that p ∣ (ap) (

b
p) − (

ab
p ) (mod p).

We’re assuming that p ≥ 3, so the only multiple of p between −2 and 2 is 0. ◻

We concluded with a nice application of Euler’s criterion. Is −1 a perfect square (mod p)?

Proposition: Given any p ≥ 3, we have

(
−1

p
) =

⎧⎪⎪
⎨
⎪⎪⎩

1 p ≡ 1 (mod 4)

−1 p ≡ −1 (mod 4)

Thus, for example, −1 is a perfect square (mod 17) but isn’t a perfect square (mod 19).
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