Today we will prove the law of quadratic reciprocity. Recall its statement:
Law of Quadratic Reciprocity: Given any distinct odd primes p and q,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} .
$$

There are 200^{+}proofs, but this is the most conceptually simple, albeit computational.
Proof of QR (by George Rousseau '91 and Tim Kunisky '08):
Recall from last time that we set

$$
\begin{aligned}
& L:=\text { "half of } \mathbb{Z}_{p q}^{\times "}=\left\{k \in \mathbb{Z}_{p q}^{\times}: k<\frac{p q}{2}\right\} \\
& R:=\text { "half of } \mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{q}^{\times "}=\left\{(a, b) \in \mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{q}^{\times}: b<\frac{q}{2}\right\} .
\end{aligned}
$$

The Chinese Remainder Theorem gives a bijection between $\mathbb{Z}_{p q}^{\times}$and $\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{q}^{\times}$, so we expect it to give a bijection between L and R as well. Of course, this might not be literally true: perhaps the bijection β given by the CRT matches up L with some way to view half of $\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{q}^{\times}$that's quite different from the set R. As it turns out, β behaves very nicely (see Step 1). Here's the broad outline of our proof of QR:
Step 1: For any $(a, b) \in R$, there exists a unique $k \in L$ such that $\beta(k)= \pm(a, b)$. From this, it immediately follows that

$$
\prod_{k \in L} \beta(k)= \pm \prod_{(a, b) \in L}(a, b)
$$

Step 2: Evaluate $\prod_{k \in L} \beta(k)=\prod_{k \in L}(k(\bmod p), k(\bmod q))=\left(\prod_{k \in L} k(\bmod p), \prod_{k \in L} k(\bmod q)\right)$.
Step 3: Evaluate $\prod_{(a, b) \in R}(a, b)$.
Step 4: Compare the results from Steps 2 and 3 and win.
Actual proof:
Step 1: On homework.
Step 2: We saw $\prod_{k \in L} \beta(k)=\left(\prod_{k \in L} k(\bmod p), \prod_{k \in L}(\bmod q)\right)$. We start by working out the first coordinate:

$$
\begin{aligned}
\prod_{\substack{k \in \mathbb{Z}_{p q}^{\times} \\
k<p q / 2}} k & \equiv \frac{\operatorname{prod} \text { of all } k<\frac{p q}{2}}{\text { prod of all } k<\frac{p q}{2} \text { s.t. } k \equiv 0(\bmod p)} \equiv \frac{(1 \cdot 2 \cdot 3 \cdots(p-1))((p+1)(p+2) \cdots(2 p-1)) \cdots}{(q)(2 q)(3 q) \cdots\left(\frac{p-1}{2} q\right)} \\
& \equiv \frac{\left(\prod_{0<k<p} k\right)\left(\prod_{p<k<2 p} k\right) \cdots\left(\prod_{\frac{q-3}{2} p<k<\frac{q-1}{2} p} k\right)\left(\prod_{\frac{q-1}{2} p<k \leq \frac{p q-1}{2}} k\right)}{q^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!} \equiv \frac{(p-1)!\cdots(p-1)!\left(\frac{p-1}{2}\right)!}{q^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!}(\bmod p)
\end{aligned}
$$

Recall from problem 4.3 that $(p-1)!\equiv-1(\bmod p)$; this is called "Wilson's Theorem". Continuing our calculation from above:

$$
\prod_{\substack{k \in \mathbb{Z}_{p q}^{\times} \\ k<p q / 2}} k \equiv \frac{(-1)^{\frac{q-1}{2}}}{q^{\frac{p-1}{2}}}=\frac{(-1)^{\frac{q-1}{2}}}{\left(\frac{q}{p}\right)}=(-1)^{\frac{q-1}{2}}\left(\frac{q}{p}\right)(\bmod p)
$$

The final step is justified because $\left(\frac{q}{p}\right)= \pm 1$, so dividing by it is the same as multiplying.
Note that we've made no assumptions that distinguish p from q, which means that the above result must also hold if we exchange the values of p and q. In other words:

$$
\prod_{\substack{k \in \mathbb{Z}_{p q}^{\times} \\ k<p q / 2}} k \equiv(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right)(\bmod q)
$$

We've thus found relatively expressions for both the first and second coordinates of $\prod_{k \in L} \beta(k)$. This completes Step 2!

Step 3: We have

$$
\begin{aligned}
\prod_{(a, b) \in R}(a, b) & =\prod_{\substack{a \in \mathbb{Z}_{p}^{\times} \\
b \in \mathbb{Z}_{q}^{x} \\
b<q / 2}}(a, b)=\prod_{a \in \mathbb{Z}_{p}^{\times}} \prod_{b \in \mathbb{Z}_{q}^{\times}}^{b<q / 2} \\
& (a, b)=\prod_{a \in \mathbb{Z}_{p}^{\times}}\left((a, 1)(a, 2) \cdots\left(a, \frac{q-1}{2}\right)\right) \\
& =\prod_{a \in \mathbb{Z}_{p}^{\times}}\left(a^{(q-1) / 2},\left(\frac{q-1}{2}\right)!\right)=\left(((p-1)!)^{(q-1) / 2},\left(\left(\frac{q-1}{2}\right)!\right)^{p-1}\right) \\
& =\left((-1)^{(q-1) / 2},\left(\left(\frac{q-1}{2}\right)!\right)^{p-1}\right) .
\end{aligned}
$$

Recall that the first coordinate is $(\bmod p)$ and the second is $(\bmod q)$. The first coordinate is pretty straightforward; can we simplify the second? We know by Wilson's theorem that $(q-1)!\equiv-1(\bmod q)$, but what is $\left(\frac{q-1}{2}\right)!(\bmod q)$?

$$
\begin{aligned}
\left(\frac{q-1}{2}\right)! & =1 \cdot 2 \cdots \cdots \frac{q-1}{2} \\
(q-1)! & =1 \cdot 2 \cdots \cdot \frac{q-1}{2} \cdot \frac{q+1}{2} \cdots \cdots(q-2)(q-1) \\
& \equiv 1 \cdot 2 \cdots \cdot \frac{q-1}{2} \cdot\left(-\frac{q-1}{2}\right) \cdots \cdots(-2)(-1)(\bmod q) \\
& \equiv(-1)^{(q-1) / 2}\left(\left(\frac{q-1}{2}\right)!\right)^{2}(\bmod q) \\
\Longrightarrow \quad\left(\left(\frac{q-1}{2}\right)!\right)^{2} & \equiv(-1)^{(q-1) / 2}(q-1)!\equiv-(-1)^{(q-1) / 2}(\bmod q)
\end{aligned}
$$

Continuing where we'd left off earlier, we find

$$
\prod_{(a, b) \in R}(a, b)=\left((-1)^{(q-1) / 2},\left(\left(\frac{q-1}{2}\right)!\right)^{2 \cdot(p-1) / 2}(\bmod q)\right)=\left((-1)^{(q-1) / 2},(-1)^{(p-1) / 2}(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\right) .
$$

Both coordinates are pretty straightforward; we've finished Step 3!
Step 4: Putting together all our work, we've proved

$$
\begin{aligned}
\left((-1)^{\frac{q-1}{2}}\left(\frac{q}{p}\right),(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right)\right) & = \pm\left((-1)^{\frac{q-1}{2}},(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\right) \\
& =\varepsilon\left((-1)^{\frac{q-1}{2}},(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\right)
\end{aligned}
$$

where $\varepsilon= \pm 1$. Comparing first and second coordinates separately,

$$
\begin{aligned}
& (-1)^{\frac{q-1}{2}}\left(\frac{q}{p}\right) \equiv \varepsilon(-1)^{\frac{q-1}{2}}(\bmod p) \Longrightarrow \varepsilon \equiv\left(\frac{q}{p}\right)(\bmod p) \Longrightarrow \varepsilon=\left(\frac{q}{p}\right) \\
& (-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right) \equiv \varepsilon(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}(\bmod q) \Longrightarrow\left(\frac{p}{q}\right) \equiv\left(\frac{q}{p}\right)(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}(\bmod q) .
\end{aligned}
$$

Multiplying both sides by $\left(\frac{q}{p}\right)$ yields

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}
$$

as claimed.
Q.E.F.D.

