
Class 18 Notes November 8, 2018

Last time we proved quadratic reciprocity (QR), which tells us whether or not a given

quadratic congruence of the form

x2 ≡ a (mod p) (∗)

is solvable. But how do we actually solve it? Our first goal is to outline a method of doing

so.

In order to solve (∗) it needs to be solvable, so we may immediately assume (a
p) = 1. Thus

by Euler’s criterion we may safely assume

a(p−1)/2 ≡ 1 (mod p). (♡)

Now comes the key observation: if p−1
2 is odd, then we can multiply both sides by a to get

aeven ≡ a (mod p),

which immediately allows us to solve (∗)!
Let’s make this more precise. If p ≡ −1 (mod 4), then we can multiply both sides of (♡) by

a to obtain

a(p+1)/2 ≡ a (mod p).

Since p ≡ −1 (mod 4), we find that

x ≡ ±a(p+1)/4 (mod p)

are two distinct solutions to (∗). Are there other solutions? No, because by problem 6.4

the congruence (∗) has at most two solutions (mod p)! We can summarize the above in the

following:

Proposition: If p ≡ −1 (mod 4) and (a
p) = 1, then the solutions to (*) are ±a(p+1)/4 (mod p).

What if p ≡ 1 (mod 4)? Then the above doesn’t work, since (p − 1)/2 is already even, so

multiplying both sides of (♡) by a doesn’t help. This does mean, however, that we can take

square-roots of both sides of (♡)! We can then repeat a similar procedure as above, but

considering p (mod 8). You will explore this approach on this week’s problem set.

In view of the above, we can efficiently solve quadratic congruences (mod p)! Actually, this

isn’t quite true: we can solve congruences of the very special form (∗). What about the

general quadratic congruence

ax2 + bx + c ≡ 0 (mod p)? (†)

First observe that it suffices to consider quadratics of the form

x2 + bx + c ≡ 0 (mod p). (‡)
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Indeed, given any congruence of the form (†), we might as well assume that a /≡ 0 (mod p),

since otherwise this is a linear congruence (and we know how to solve those). But if

a /≡ 0 (mod p) we can divide both sides by a to get a congruence of the form (‡) that has the

same solutions as (†).
OK, so how do we solve (‡)? This is classical: complete the square! We see that (‡) implies

(x + b
2)2 ≡ x2 + bx + ( b

2)2 ≡ ( b
2)2 − c (mod p).

But this is precisely a congruence of the form (∗), so we can solve for x + b
2 ! Thus, we have

a method for solving arbitrary quadratic congruences (mod p).

Now what if we move away from (mod p) to (mod n)? For example, suppose we wish to

solve

x2 ≡ a (mod pq) (♣)

where p and q are distinct primes. It turns out we can solve this using the Chinese Remainder

Theorem.

Step 1: Using our method above, find a solution to x2 ≡ a (mod p), say, x ≡ xp (mod p).

Similarly, find a solution x ≡ xq (mod q) to x2 ≡ a (mod q).

Step 2: By CRT there exists a unique y ∈ Zpq such that y ≡ xp (mod p) and y ≡ xq (mod q).

Moreover, this y isn’t hard to actually compute.

Step 3: We’ve thus found a number y ∈ Zpq such that

y2 ≡ x2
p ≡ a (mod p) and y2 ≡ x2

q ≡ a (mod q).

I claim this means y2 ≡ a (mod pq). Indeed, note that a ≡ a (mod p) and a ≡ a (mod q), and

the CRT implies that a is the unique element of Zpq satisfying this. But y2 also satisfies

these two congruences! Thus, y2 ≡ a (mod pq). Since we actually computed y, we’ve found

a solution to (♣)!
This looks very nice, but there’s an important subtlety: to make the above procedure work,

we need to know p and q individually. In other words, if we can factor the composite number

pq, then we can efficiently solve quadratic congruences (mod pq). It turns out the converse is

also true: if there exists an efficient method to solve quadratic congruences (mod pq), then we

can use it to efficiently determine the factorization of pq. Thus, solving quadratic congruences

(mod pq) is comparably difficult to factoring! Since efficient factoring is currently open, so

is the question of efficiently solving quadratic congruences (mod pq).

This concludes (for now) our exploration of the modular world, and we return to the familiar

land of Z.
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Sums of Squares

Question: Which integers can be written as the sum of two squares? Put more formally:

what can we say about the structure of the set

S ∶= {x2 + y2 ∶ x, y ∈ Z} = {0,1,2,4,5,8,9,10,13,16,17,18,20,25,26,29,32 . . .}?

Well, we know that n2 and n2+1 live in S for every integer n. But what about some random

number? For example, is 2019 ∈ S? Ben says no, because nothing ≡ 3 (mod 4) lives in S.

Why is this?

Proposition: Any perfect square is ≡ 0 or 1 (mod 4).

Proof: We have (2n)2 ≡ 0 (mod 4) and (2n + 1)2 ≡ 1 (mod 4). Since any integer is even or

odd, this proves the claim. ◻
Thus anything in S must be 0, 1, or 2 (mod 4); in particular, S does not contain any number

that’s 3 (mod 4). What about the converse? Is everything equivalent to 0, 1, or 2 (mod 4)

in S? No: 6 ∉ S.

Since the structure of S is opaque, we turn to a related (but hopefully easier) problem to

get inspired. Define

D ∶= {x2 − y2 ∶ x, y ∈ Z, x ≥ y} = {0,1,3,4,5,7,8,9,11,12,13, . . .}.

Max: All odd integers are in D since 2n + 1 = (n + 1 + n)(n + 1 − n) = (n + 1)2 − (n)2 ∈D.

If n ≡ 2 (mod 4) then n ∉D, since any square is 0 or 1 (mod 4).

Oliver: 4n = (n + 1 + n − 1)(n + 1 − (n − 1)) = (n + 1)2 − (n − 1)2 ∈D.

Putting these three insights together, we see that D = {n ≥ 0 ∶ n /≡ 2 (mod 4)}.

Returning to S, we see that a similar trick doesn’t work, since we can’t factor the sum of two

squares. OR CAN’T WE? Ben pointed out we can factor this in C: x2+y2 = (x+ iy)(x− iy).
This led us to think about the ‘Gaussian integers’

Z[i] ∶= {a + bi ∶ a, b ∈ Z}.
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