Last time we proved quadratic reciprocity (QR), which tells us whether or not a given quadratic congruence of the form

$$
\begin{equation*}
x^{2} \equiv a(\bmod p) \tag{*}
\end{equation*}
$$

is solvable. But how do we actually solve it? Our first goal is to outline a method of doing so.

In order to solve $(*)$ it needs to be solvable, so we may immediately assume $\left(\frac{a}{p}\right)=1$. Thus by Euler's criterion we may safely assume

$$
\begin{equation*}
a^{(p-1) / 2} \equiv 1(\bmod p) . \tag{O}
\end{equation*}
$$

Now comes the key observation: if $\frac{p-1}{2}$ is odd, then we can multiply both sides by a to get

$$
a^{\mathrm{even}} \equiv a(\bmod p),
$$

which immediately allows us to solve ($*$)!
Let's make this more precise. If $p \equiv-1(\bmod 4)$, then we can multiply both sides of (\mathbb{Q}) by a to obtain

$$
a^{(p+1) / 2} \equiv a(\bmod p) .
$$

Since $p \equiv-1(\bmod 4)$, we find that

$$
x \equiv \pm a^{(p+1) / 4}(\bmod p)
$$

are two distinct solutions to $(*)$. Are there other solutions? No, because by problem $\mathbf{6 . 4}$ the congruence $(*)$ has at most two solutions $(\bmod p)$! We can summarize the above in the following:
Proposition: If $p \equiv-1(\bmod 4)$ and $\left(\frac{a}{p}\right)=1$, then the solutions to $\left(^{*}\right)$ are $\pm a^{(p+1) / 4}(\bmod p)$.
What if $p \equiv 1(\bmod 4)$? Then the above doesn't work, since $(p-1) / 2$ is already even, so multiplying both sides of (\mathcal{O}) by a doesn't help. This does mean, however, that we can take square-roots of both sides of (\varnothing) ! We can then repeat a similar procedure as above, but considering $p(\bmod 8)$. You will explore this approach on this week's problem set.

In view of the above, we can efficiently solve quadratic congruences $(\bmod p)$! Actually, this isn't quite true: we can solve congruences of the very special form (*). What about the general quadratic congruence

$$
a x^{2}+b x+c \equiv 0(\bmod p) ?
$$

First observe that it suffices to consider quadratics of the form

$$
x^{2}+b x+c \equiv 0(\bmod p) .
$$

Indeed, given any congruence of the form (\dagger), we might as well assume that $a \neq 0(\bmod p)$, since otherwise this is a linear congruence (and we know how to solve those). But if $a \not \equiv 0(\bmod p)$ we can divide both sides by a to get a congruence of the form (\ddagger) that has the same solutions as (\dagger).
OK, so how do we solve (\ddagger) ? This is classical: complete the square! We see that (\ddagger) implies

$$
\left(x+\frac{b}{2}\right)^{2} \equiv x^{2}+b x+\left(\frac{b}{2}\right)^{2} \equiv\left(\frac{b}{2}\right)^{2}-c(\bmod p) .
$$

But this is precisely a congruence of the form (*), so we can solve for $x+\frac{b}{2}$! Thus, we have a method for solving arbitrary quadratic congruences $(\bmod p)$.

Now what if we move away from $(\bmod p)$ to $(\bmod n)$? For example, suppose we wish to solve

$$
x^{2} \equiv a(\bmod p q)
$$

where p and q are distinct primes. It turns out we can solve this using the Chinese Remainder Theorem.

Step 1: Using our method above, find a solution to $x^{2} \equiv a(\bmod p)$, say, $x \equiv x_{p}(\bmod p)$. Similarly, find a solution $x \equiv x_{q}(\bmod q)$ to $x^{2} \equiv a(\bmod q)$.

Step 2: By CRT there exists a unique $y \in \mathbb{Z}_{p q}$ such that $y \equiv x_{p}(\bmod p)$ and $y \equiv x_{q}(\bmod q)$. Moreover, this y isn't hard to actually compute.

Step 3: We've thus found a number $y \in \mathbb{Z}_{p q}$ such that

$$
y^{2} \equiv x_{p}^{2} \equiv a(\bmod p) \quad \text { and } \quad y^{2} \equiv x_{q}^{2} \equiv a(\bmod q) .
$$

I claim this means $y^{2} \equiv a(\bmod p q)$. Indeed, note that $a \equiv a(\bmod p)$ and $a \equiv a(\bmod q)$, and the CRT implies that a is the unique element of $\mathbb{Z}_{p q}$ satisfying this. But y^{2} also satisfies these two congruences! Thus, $y^{2} \equiv a(\bmod p q)$. Since we actually computed y, we've found a solution to ($\boldsymbol{*}$)!

This looks very nice, but there's an important subtlety: to make the above procedure work, we need to know p and q individually. In other words, if we can factor the composite number $p q$, then we can efficiently solve quadratic congruences $(\bmod p q)$. It turns out the converse is also true: if there exists an efficient method to solve quadratic congruences $(\bmod p q)$, then we can use it to efficiently determine the factorization of $p q$. Thus, solving quadratic congruences $(\bmod p q)$ is comparably difficult to factoring! Since efficient factoring is currently open, so is the question of efficiently solving quadratic congruences $(\bmod p q)$.

This concludes (for now) our exploration of the modular world, and we return to the familiar land of \mathbb{Z}.

Sums of Squares

Question: Which integers can be written as the sum of two squares? Put more formally: what can we say about the structure of the set

$$
S:=\left\{x^{2}+y^{2}: x, y \in \mathbb{Z}\right\}=\{0,1,2,4,5,8,9,10,13,16,17,18,20,25,26,29,32 \ldots\} ?
$$

Well, we know that n^{2} and $n^{2}+1$ live in S for every integer n. But what about some random number? For example, is $2019 \in S$? Ben says no, because nothing $\equiv 3(\bmod 4)$ lives in S. Why is this?

Proposition: Any perfect square is $\equiv 0$ or $1(\bmod 4)$.
Proof: We have $(2 n)^{2} \equiv 0(\bmod 4)$ and $(2 n+1)^{2} \equiv 1(\bmod 4)$. Since any integer is even or odd, this proves the claim.

Thus anything in S must be 0,1 , or $2(\bmod 4)$; in particular, S does not contain any number that's $3(\bmod 4)$. What about the converse? Is everything equivalent to 0,1 , or $2(\bmod 4)$ in S ? No: $6 \notin S$.

Since the structure of S is opaque, we turn to a related (but hopefully easier) problem to get inspired. Define

$$
D:=\left\{x^{2}-y^{2}: x, y \in \mathbb{Z}, x \geq y\right\}=\{0,1,3,4,5,7,8,9,11,12,13, \ldots\} .
$$

Max: All odd integers are in D since $2 n+1=(n+1+n)(n+1-n)=(n+1)^{2}-(n)^{2} \in D$.
If $n \equiv 2(\bmod 4)$ then $n \notin D$, since any square is 0 or $1(\bmod 4)$.
Oliver: $4 n=(n+1+n-1)(n+1-(n-1))=(n+1)^{2}-(n-1)^{2} \in D$.
Putting these three insights together, we see that $D=\{n \geq 0: n \neq 2(\bmod 4)\}$.
Returning to S, we see that a similar trick doesn't work, since we can't factor the sum of two squares. OR CAN'T WE? Ben pointed out we can factor this in $\mathbb{C}: x^{2}+y^{2}=(x+i y)(x-i y)$. This led us to think about the 'Gaussian integers'

$$
\mathbb{Z}[i]:=\{a+b i: a, b \in \mathbb{Z}\} .
$$

