
Class 21 Notes November 19, 2018

Challenge: Expand

(1 − x)(1 − x2)(1 − x3)(1 − x4)(1 − x5)(1 − x6)⋯.

After some work, we collaboratively came up with the following:

(1−x)(1−x2)(1−x3)(1−x4)(1−x5)(1−x6)⋯ = 1−x−x2+x5+x7−x12−x15+x22+x26−x35−x40+x51+x57−⋯.

What’s the pattern? The sign pattern is clear: we have

∏
k≥1
(1 − xk) = 1 +∑

n≥1
(−1)n(xPn + xP

′

n).

But what can we say about the mysterious sequences Pn and P ′
n? Kimberly observed that

Pn − P ′
n = n for all n; this reduces the problem to figuring out Pn.

Euler’s Pentagonal Number Theorem. The above product holds with Pn being the sequence

of pentagonal numbers.

Before explaining exactly what the pentagonal numbers are, we warm up with a couple of

other sequences:

(1) The triangular numbers.

The triangular numbers are defined

T1 ∶= 1 T2 ∶= 3 T3 ∶= 6 T4 ∶= 10 ⋯

The illustration below1 should make clear where the name comes from:

Illustration of T3, T4, and T5

More generally,

Tn = ∑
1≤k≤n

k =
n(n + 1)

2

(2) The square numbers.

The square numbers are defined 1,4,9,16, . . . Here’s a picture:

1Tex code used to draw this thanks to an amazing post by user Qrrbrbirlbel on tex stackexchange.
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Illustration of square numbers

(3) The pentagonal numbers.

The pentagonal numbers are defined

P1 ∶= 1 P2 ∶= 5 P3 ∶= 12 P4 ∶= 22 ⋯

It’s clear that P1 can be represented by a single point and P2 by a pentagon, but what about

P3 onwards? After some consideration, Max proposed the following:

Illustration of P3, P4, and P5

How do we get a formula for Pn? Ben pointed out that the second rate of change is constant

(namely, 3). Thus the first rate of change is like 3n (+C, as we remember from calculus!),

so the function Pn should grow like 3
2n

2. By comparing this with the actual values of Pn, we

quickly deduced that

Pn =
n(3n − 1)

2

(An alternative is to carefully examine the color-coding in the pictures above.) With Pn in

hand, we can easily compute P ′
n = Pn + n =

n(3n+1)
2 .

Sums of polygonal numbers. Having warmed up with polygonal numbers, we now return

to the familiar

Lagrange’s Four-Squares Theorem: Every n is the sum of four squares.
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Long before this was proved, a remarkable generalization had been formulated (by Girard,

and subsequently by Fermat):

Fermat’s Polygonal Numbers Conjecture: Every n ≥ 1 is the sum of 3 triangular numbers, 4

squares, 5 pentagonal numbers, and (more generally) k many k-gonal numbers.

As you might imagine, this conjecture isn’t so easy to prove. After Lagrange’s success with

squares, the next step is due to Gauss:

Gauss’ Eureka Theorem: n =△+△+△.

The entire polygonal conjecture was proved by Cauchy soon thereafter. Although we won’t

cover the proof of this in our course, it is accessible to you (in the sense that it doesn’t require

any tools you haven’t already learned), and I encourage you to read up on it. From here, we

explore our final question about sums of squares, which also happens to be a natural segue

into our last main topic in the course: elliptic curves.

PYTHAGOREAN TRIPLES:

Challenge: Find all integer solutions to

x2 + y2 = z2. (♠)

Any integer solution (x, y, z) ∈ Z3 is called a pythagorean triple because, as Konnor pointed

out, this is equivalent to asking about right triangles with integer sides. (Some history:

Plimpton 322 is an ancient Babylonian tablet with what appear to be a list of enormous

pythagorean triples. This problem was more carefully considered in Euclid’s classic book,

The Elements.)

Notation: From now on we’ll abbreviate pythagorean triple as PT.

What are some PTs? Right away we can generate infinitely many trivial solutions to (♠):

(x, y, z) = (0,±a,±a) or (±a,0 ± a).

This isn’t too interesting. Are there any nontrivial PTs (x, y, z)? Sure:

(3,4,5), (5,12,13), (8,15,17), (7,24,25), . . .

Are there infinitely many nontrivial pythagorean triples? Yes! Just take all scalar multiples

of (3,4,5):

(3,4,5), (6,8,10), (9,12,15), . . .

This feels like cheating, though. The real question is, are there infinitely many legitimately

different PTs? Let’s call those triples that aren’t multiples of other triples primitive. The
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rest – the PTs that are multiples of other PTs – we call imprimitive. We can describe the

primitive PTs in a different way:

Proposition (Miranda): A pythagorean triple (a, b, c) is primitive if and only if (a, b) = 1.

Proof.

(⇐) Straightforward.

(⇒) Suppose (a, b) > 1. Then ∃p ∣ (a, b). Since a2 + b2 = c2, we deduce

p ∣ a2 + b2 Ô⇒ p ∣ c2 Ô⇒ p ∣ c.

But then (ap ,
b
p ,

c
p) is also a PT, whence (a, b, c) isn’t primitive. ◻

We thus arrive at a refinement of our original challenge:

Challenge v2.0: Find all nontrivial primitive pythagorean triples.

We will solve this using geometry. The key insight is that if (a, b, c) is a PT, then (ac ,
b
c) is a

point on the unit circle. Conversely, if we have any point (α,β) on the unit circle with both

α,β ∈ Q, this produces a PT. This motivates the following definition:

Definition: A rational point is any element of Q2, i.e. any coordinate pair (x, y) with x, y ∈ Q.

Thus, to find all PTs it suffices to find all rational points on the unit circle. We’ll solve this

problem next time.
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