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Last time we stated Fermat’s Last Theorem: for any integer n ≥ 3, there are no nontrivial

integer solutions to the equation xn + yn = zn. (Recall that (x, y, z) is nontrivial iff xyz ≠ 0.)

Although first conjectured by Fermat in 1637, this resisted all efforts at proof until the 1990s,

when Andrew Wiles (then at Princeton, now at Oxford) succeeded in proving this assertion.

Central to Wiles’ approach are elliptic curves, which are curves of the form y2 = x3 + ax + b.

What’s the connection between such curves and the Fermat equation? Let’s consider an

example.

Suppose we have a nontrivial integer triple (a, b, c) such that a3 + b3 = c3. Our goal is to

get something in the form of an elliptic curve, i.e. a square of something equalling a cube

of something plus some linear correction factors. A bit of playing around might lead you to

consider the quantity (a3 + 2b3)2:

(a3 + 2b3)2 = a6 + 4(ab)3 + 4b6 = a6 + 4b3(a3 + b3) = a6 + 4b3c3.

Dividing by a6,
(a3 + 2b3)2

a6
= 1 +

4b3c3

a6

Notice the left hand side is a square, and the right hand side is 1 plus something that’s

almost a cube; the only issue is the 4. To fix this we multiply by 16:

16(a3 + 2b3)2

a6
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y2

= 16 +
64b3c3

a6
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

x3

.

In other words, starting with a nontrivial solution to FLT with n = 3 produces a nontrivial

rational point (x, y) on the elliptic curve y2 = x3 + 16. So to prove FLT for n = 3 all we have

to do is to show that this elliptic curve doesn’t have any nontrivial rational points. This

isn’t so easy to do, but it turns out there are exactly two rational points on y2 = x3 + 16:

(0,±4).

What about rational points on other elliptic curves? To get a feel for this, here’s a sampler

of elliptic curves and their rational points (the values in the middle column aren’t obvious!):

E Total # of rational points on E rational points

y2 = x3 + 16 2 (0,±4)

y2 = x3 + 1 5 (−1,0), (0,±1), (2,±3)

y2 = x3 − 1 1 (1,0)

y2 = x3 − 2 infinitely many (3,±5), . . .

y2 = x3 − 5 none none
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This table shows that even for the most bare-bones elliptic curve of the form y2 = x3 + k

(sometimes called Bachet’s equation or Mordell’s equation in the literature), it can be hard

to predict how many rational points might be on it.

Earlier we defined an elliptic curve to be an equation of the type y2 = x3 + ax + b. It will be

useful to shift our perspective and re-define an elliptic curve to be the set of points on this

curve. Formally:

Definition: An elliptic curve is any set of the form

E ∶= {(x, y) ∶ y2 = x3 + ax + b}

where a, b are fixed.

At first glance, this seems a bit pedantic. Who cares about whether we’re discussing the

equation or the points satisfying that equation?! But there’s something vital missing from

the above definition: where the points (x, y) live. Are they real numbers? Rational numbers?

Complex numbers? The corresponding shape of the set drastically changes depending on

the types of inputs we allow. For example, the set of solutions to

x3 = 2

is empty if we require x to be rational, consists of precisely one point if we allow x to be

real, and consists of three points if we allow x to be complex.

To specify where our elliptic curve lives, we write

E(S) ∶= {(x, y) ∈ S2 ∶ y2 = x3 + ax + b}.

Thus, for example, if our elliptic curve E is defined by the equation y2 = x3−x+2, then E(R)
is the set of all points in the plane R2 satisfying the equation y2 = x3 −x+ 2. In other words,

E(R) is the graph of y2 = x3 − x + 2:

−4 −2 2 4

−4

−2

2

4
y2 = x3 − x + 2

x

y
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For other elliptic curves, E(R) might look different; you should try visualizing E(R) for the

curve y2 = x3 − x.

As we saw above, shifting to E(Q) may yield no points, or infinitely many points, or just a

few; we’ll return to this shortly. If we look at E(C), we have to look at 4 dimensions, since

we have two numbers with 2 dimensions each, but it turns out to have the structure of a

torus (a fancy word for donut). For this reason, elliptic curves are usually abstractly defined

as “curves of genus 1”; here the word genus means the number of holes (so a donut is genus

1 because it has one hole).

Digression on nomenclature

One natural question is: what the heck does any of this have to do with ellipses? Why are

they called elliptic curves? The story is a bit convoluted, so bear with me. Recall that we

have nice formulas for the area and circumference of a circle (πr2 and 2πr, respectively), as

well as for the area of an ellipse: πr1r2, where r1 and r2 are the major and minor radii of the

ellipse. (This formula is intuitive: take a unit circle (area = π), stretch it in the x-direction

by a factor of r1, and in the y-direction by a factor of r2.) What you might not have thought

about is: what is the circumference of an ellipse? By using techniques from single-variable

calculus, it’s not too hard to write down a formula for the arc length of the part of the ellipse

in the first quadrant:

(−r1,0) (r1,0)

(0,−r2)

(0, r2)

1

4
× circumference = ∫

π/2

0

√

r21 cos2 θ + r22 sin2 θ dθ

Remarkably, no simpler formula for the circumference is known. In particular, we don’t

know how to express the circumference without using an integral sign!
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The above represents the arclength of the part of the ellipse with subtended angle π/2. There

are more complicated formulas for the arclength of the part of the ellipse with subtended

angle α. While investigating this, Abel was led to ask the opposite question: is there a

formula to express the subtended angle α in terms of the arclength, say, α = f(`)? It turns

out that there is, and that this function has an unexpectedly nice property: when viewed

as a function over the complex numbers f is doubly periodic, i.e. there exist ω1, ω2 ∈ C such

that f(z) = f(z+ω1) = f(z+ω2) for all z ∈ C. This led Weierstrass to formulate the notion of

an elliptic function: any function f ∶ C → C that is non-constant and doubly periodic (with

the two periods being linearly independent, i.e. genuinely different). One way to think about

this is as the natural generalization of the notion of a trigonometric function (a periodic

function on R) to C.

Elliptic functions turn out to be useful in multiple areas, particularly in differential equations

and number theory. One of the early examples of an elliptic function is the Weierstrass

℘ function. I won’t state its definition here, but it turns out this function satisfies the

differential equation

(
1

2
℘′(z))

2

= ℘(z)3 + a℘(z) + b

for certain constants a and b. This led Jacobi to study equations of the form y2 = x3 +

ax + b, which became known as elliptic curves. In summary: elliptic curves are a family

of equations generalizing a differential equation satisfied by a specific elliptic function, and

elliptic functions are a generalization of a function coming from the study of the circumference

of an ellipse.

As you can see, the appearance of ellipses in the term elliptic curve is more of a historical

accident rather than descriptive nomenclature. However, a remarkable recent discovery by

Agarwal and Natarajan gives a direct connection between ellipses and elliptic curves. Given

a triangle, we say an ellipse is inscribed in the triangle if it’s tangent to all three sides. For a

given triangle T , consider the set of all foci of all ellipses that can be inscribed in T ; it turns

out this forms an elliptic curve. Even more amazingly, every elliptic curve can be realized

this way!

Back to rational points

Recall that (inspired by Fermat’s Last Theorem) we were looking at E(Q), the set of all

rational points on a given elliptic curve E .

Question: How do we find rational points on a given elliptic curve?
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Rather than answering this question, we pivot and show how, given some rational solutions,

to generate others.

Idea (Bachet + Fermat, 1600s): Suppose you have two rational points, P,Q on E (i.e. in

E(Q)). Can you imagine a way to use these two points on E to generate a third? There’s a

natural geometric way to do so: draw the line that passes through P and Q, and find the

third point where it hits E .

y2 = x3 + 7

P

Q P ⊕Q

x

y

Label this third point P ⊕Q. Amazingly, it turns out this operation preserves rationality:

Theorem 1: If P,Q are rational points, then P ⊕Q is rational.

Miranda noticed this does not always work. Given a point P on the elliptic curve, consider

the point P that’s a reflection of P across the x-axis.1 If P is rational, then so is P . But

the line connecting P and P doesn’t intersect the elliptic curve anywhere else! To formally

satisfy Theorem 1, we can write P ⊕ P = ∞. This inspires a definition:

Definition: Given any elliptic curve E , we create a point ∞ and stipulate that ∞ ∈ E(Q).
Moreover, by convention, for any P ∈ E we have P ⊕ P ∶= ∞.

This formally resolves Miranda’s question, in that Theorem 1 now holds even when the line

connecting P and P is vertical. Well, not quite: what if P = P , i.e. if P is on the x-axis? By

our definition, we expect P ⊕ P = ∞. Max observed that this makes sense from a geometric

perspective as well: we can view the line connecting P to P as the vertical line tangent to

1The notation is inspired by complex conjugation: in the complex plane, the complex conjugate z is the

reflection of z across the real axis.
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the elliptic curve at P . In fact, this inspires a more general idea: for any rational point P ,

we defined P ⊕ P to be the intersection of the line tangent to the elliptic curve at P with

the elliptic curve. It turns out Theorem 1 holds in this case as well. Cool!

Ben pointed out that this seems to contradict our table of examples (from page 1): we

asserted there that the curve y2 = x3 − 1 only has the single rational point (1,0), but The-

orem 1 implies that we can add this point to itself to get a new rational point! In fact,

(1,0) ⊕ (1,0) = ∞, which we also consider rational. This means that, according to our new

convention with ∞, our table is a bit wrong: the number of rational points on y2 = x3 − 1 is

2, and more generally, all the numbers in the middle column should increase by one.

Mia observed that implicit in our discussion of Theorem 1 is the assumption that a line

cannot intersect an elliptic curve more than 3 times. (If this could happen, the ⊕ operation

wouldn’t be well defined!) To justify our assumption, write the equation of a line and of the

elliptic curve; these are two equations in two variables, so we can solve them simultaneously

to find the intersection points. When you go through this process, you’ll see that this boils

down to a cubic equation in x. Thus, if we’re given two points with distinct x-coordinates,

there’s exactly one remaining solution to the cubic; this produces two points on the elliptic

curve, but only one of these can be on the line through the two given points. (You should

carry out this exercise with a specific elliptic curve and a specific line to get a better sense

of the argument.)

Ben asked about how useful the operation ⊕ is to finding rational points on an elliptic curve.

Starting with two given rational points P and Q, we can use the operation to generate a new

rational point P ⊕ Q, but these three points are collinear and we can’t generate anything

other new points; for example, P ⊕ (P ⊕Q) = Q, a point we already knew about. Is there

way a to generate more points starting with two points P and Q?

The answer is a resounding yes! First observe that we can look at P ⊕ P and Q⊕Q; these

potentially give us new points to play with, and then we can look at other combinations (e.g.

P ⊕(P ⊕P ), etc). The other observation is that if P is a rational point, then so is P , so we

can look at expressions of the form P ⊕Q. Thus, starting with just two rational points (or

even just one!) often allows us to generate many more rational points.

On our table (adjusted to include the point at infinity among the rational points), we saw

examples of elliptic curves that had 1,2,3,6, and infinitely many rational points. Mia asked

whether there’s any pattern or restrictions on the number of rational solutions. A remarkable

theorem discovered by Barry Mazur in 1977 asserts that the number of rational points on an

elliptic curve is either one of the numbers {1,2,3, ...,16} ∖ {11} or is infinite. This inspired

Jacob to deduce that once you find 17 rational points on an elliptic curve, the curve must
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have infinitely many rational points.

It turns out that even in the case that there are infinitely many rational points on an elliptic

curve, you can generate them all by starting with some finite set and applying Theorem 1:

Theorem (Mordell, ∼1920’s): E(Q) is finitely generated, i.e. there exists a finite set of ratio-

nal points such that all rational points can be obtained using only our P ⊕Q method for

constructing new points.

Unfortunately, even though Mordell’s theorem implies the existence of a finite generating

set, it’s an open problem to actually determine this set for a general elliptic curve.

Algebraic properties of ⊕

Theorem 1 asserts that E(Q) is closed under ⊕. This is reminiscent of Z under +, and Zn
under + (mod n), and Z×

n under × (mod n). In these other cases, however, we have further

algebraic structure, for example an identity element (0, 0, and 1, respectively).

Question: Does there exist an identity in E(Q), i.e. some e ∈ E(Q) such that e ⊕ P = P for

any P ∈ E(Q)?

Playing around a bit convinced us that while for any given P we can find an e such that

e ⊕ P = P , there’s no universal identity that satisfies this property simultaneously for all

points P . However, Alex observed that ∞ behaves almost like an identity: ∞⊕P = P for all

P ∈ E(Q). Inspired by this idea, we were led to ask whether we could tweak the definition

of ⊕ so that ∞ is literally an identity? And we can! Consider the binary operation

P ∗Q ∶= P ⊕Q.

P

Q
P ⊕Q

P ∗Q

x

y
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It’s easy to check that ∞∗P = P for all points P , so ∞ is an identity with respect to ∗. This

new binary operation enjoys some other nice algebraic properties:

Theorem: Given an elliptic curve E/Q (i.e. E is of the form y2 = x3 + ax + b with a, b ∈ Q).

Then

(1) E(Q) (including ∞) is closed under ∗.

(2) P ∗Q = Q ∗ P (“∗ is commutative”)

(3) P ∗Q ∗R is unambiguous, i.e. (P ∗Q) ∗R = P ∗ (Q ∗R) (“∗ is associative”)

(4) ∞∗ P = P (“∞ is an identity with respect to ∗”)

(5) P ∗ P = ∞ (“P is the inverse of P”)

In the language of abstract algebra, properties (1)+(3)-(5) assert that the operation ∗ makes

the set E(Q) into a group; property (2) asserts that E(Q) is an abelian group.
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