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Problem Set 1

1.1 Why don’t we consider 1 a prime? (Give a short but compelling argument.)

1.2 Prove that n2 − 1 is prime for exactly one value of n ∈ N.

1.3 Given an integer a and a positive integer d, we proved in class that there exist integers q and r such
a = qd+ r and 0 ≤ r < d. Prove (without using the Euclidean algorithm) that gcd(a, d) = gcd(d, r).

1.4 Prove the following claim, asserted by Miranda in Lecture 1:

Claim (Miranda). Given a, b ∈ Z, let d := gcd(a, b) and set a′ := a/d and b′ := b/d. Then gcd(a′, b′) = 1.

1.5 Suppose a, b, c ∈ Z, and define a′ and d as in 1.4 above. Prove that a | bc if and only if a′ | c.

1.6 Given a, b, c ∈ Z, consider the equation

(*) ax+ by = c.

The goal of this problem is to describe all integer solutions (x, y) to this equation. Suppose that x0 and
y0 are integers satisfying ax0 + by0 = c, i.e. that (x0, y0) is an integer solution to (*).

(a) Prove that x = x0 + b′k, y = y0 − a′k is an integral solution to (*) for every k ∈ Z. [See problem 1.4
for the definitions of a′ and b′.]

(b) Conversely, show that if x, y is an integral solution to (*), then there exists some integer k such that
x = x0 + b′k and y = y0 − a′k. [Hint: you may find problem 1.5 helpful.]

1.7 Prove that gcd(a, a+ k) | k for all integers a and k.

1.8 Suppose a | n and b | n.

(a) If gcd(a, b) = 1, prove that ab | n.

(b) Does the same conclusion hold if gcd(a, b) 6= 1? Either prove that it does or find a counterexample.

1.9 Prove that d | n if and only if νp(d) ≤ νp(n) for every prime p. [Hint: Look at the proof of Konnor’s
assertion from the end of Lecture 3.]

1.10 In Lecture 3, Konnor observed (and then we proved) that νp(ab) = νp(a) + νp(b).

(a) Express νp
(

gcd(a, b)
)

and νp
(
lcm(a, b)

)
in terms of νp(a) and νp(b). [lcm denotes the least common

multiple.]

(b) What can you say about gcd(a, b) · lcm(a, b)? Prove your assertion.

1.11 The goal of this exercise is to prove the following result. (Recall that Q denotes the set of all fractions,
i.e. all numbers of the form a/b with a, b ∈ Z and b 6= 0.)

Theorem 1. For any positive integer n, either
√
n ∈ Z or

√
n 6∈ Q.

(a) Prove that b | a if and only if b2 | a2.

(b) Use part (a) to prove that if
√
n ∈ Q then

√
n ∈ Z. This proves the theorem!
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