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Problem Set 6

6.1 In this problem we explore the uniqueness of solutions to power congruences.

(a) Use the method from class to find a solution to x47 ≡ 3 (mod 77).

(b) Prove that x 6∈ Z×
77 implies x47 6≡ 3 (mod 77).

(c) Prove that your solution in part (a) is unique. [Hint: Suppose x and y are both solutions. Prove that
either x ≡ y (mod 77) or x 6∈ Z×

77.]

6.2 The goal of this problem is to explore binary notation.

(a) Write 29 as a sum of distinct powers of 2.

(b) Prove that any positive integer can be written as the sum of distinct powers of 2.
[Hint: Induction! And split into even / odd cases.]

(c) Prove that there’s a unique way to write a given positive integer as the sum of distinct powers of 2.

6.3 Generating large primes.

(a) Assuming the Prime Number Theorem, roughly how many primes would you expect between 10100

and 2× 10100?

(b) One interpretation of the Prime Number Theorem is that the probability that a randomly selected
integer n is prime is approximately 1

logn . Assuming this interpretation, how many 100-digit numbers do
you expect to have to select before finding a prime? Justify your answer.

6.4 The goal of this exercise is to show that monic polynomials can’t have too many roots (mod p). (Monic
means the coefficient of the highest-degree term is 1.) More precisely:

Theorem 1. Suppose f is a monic polynomial with integer coefficients, and consider the collection of
all the roots of f (mod p):

Zf := {α ∈ Zp : f(α) = 0}.

Then |Zf | ≤ deg f .

(a) Given f as in the theorem and any α ∈ Z, prove that (x− α) |
(
f(x)− f(α)

)
.

(b) Suppose α ∈ Zf . Prove that f(x) = (x−α)g(x) for some monic polynomial g with integer coefficients,
and that Zf ⊆ Zg ∪ {α}.
(c) Prove the theorem.

(d) Does the theorem hold if we replace p by an arbitrary integer n? Justify your answer.
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