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Problem Set 8

8.1 In the last problem set you explored a method for efficiently extracting square-roots (mod p); this is
called the Tonelli-Shanks algorithm. In class (Lecture 18) we saw how to combine this with the Chinese
Remainder Theorem to efficiently solve congruences of the form

(∗) x2 ≡ a (mod pq),

but our method only worked if we know p and q. The goal of this exercise is to prove the converse: that
if there exists an algorithm that efficiently extracts square-roots (mod pq), then we can efficiently factor
pq. Thus, extracting square-roots (mod pq) is equivalently hard to factoring pq.

Fix distinct odd primes p and q, write p := 1
p (mod q) and q := 1

q (mod p), and set

µ := pp− qq (mod pq).

(a) Prove that µ2 ≡ 1 (mod pq).

(b) Prove that µ 6≡ ±1 (mod pq).

(c) Prove that (µ+ 1, pq) = p.

(d) Suppose there exists an efficient algorithm for taking square-roots (mod pq), i.e. some algorithm
that, given any a, produces all solutions to (∗). Describe an efficient algorithm for finding the prime
factorization of pq.

(e) Prove that if α ∈ Zpq is a solution to the congruence (∗), then {±α,±µα} is a complete set of solutions
(mod pq).

(f) Suppose there exists an efficient algorithm that produces one particular choice of a ∈ Z×pq and four
solutions to (∗) for this a. (Compare this to (d), in which the algorithm is assumed to work for every
choice of a.) Describe an efficient algorithm for finding the prime factorization of pq.

8.2 The goal of this problem is to develop a different (and ingenious!) approach to Fermat’s two-squares
theorem; it was apparently first discovered by Thue in the early 20th century. Fix a prime p ≡ 1 (mod 4).

(a) Prove the existence of γ ∈ Z such that γ2 ≡ −1 (mod p).

• For the rest of the problem, fix a suitable choice of γ from part (a).

(b) Suppose there exist integers a, b, not both zero, such that

|a| ≤ √p , |b| ≤ √p , and a ≡ bγ (mod p).

Prove that p = a2 + b2.

(c) Let k := b√pc, and suppose f : Zk+1×Zk+1 −→ Zp is a function. Prove that f cannot be an injection.

(d) Consider the function defined by f(m,n) := m−nγ (mod p). Use the previous parts of this problem
to deduce that p is the sum of two squares.

8.3 Some problems about C. If z := a+bi with a, b ∈ R, we say that a is the real part of z, denoted Re z := a,
and b is the imaginary part of z, denoted Im z := b.

(a) Let Q[i] := {z : Re z, Im z ∈ Q}. Prove that for any α, β ∈ Q[i] we have α, α + β, αβ, αβ ∈ Q[i]. (In

the last of these, assume that β 6= 0.)

(b) Give an example of α ∈ Q[i] such that |α| 6∈ Q[i].

(c) For any z ∈ C, prove that Re z = 1
2 (z + z) and Im z = 1

2i (z − z).
(d) Prove that zw = z w and z + w = z + w for all z, w ∈ C.
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(e) Recall the following Taylor series expansions:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

Show that eiθ = cos θ + i sin θ. (You don’t have to worry about convergence of infinite series.)

(f) Use part (e) to find formulas for sin 3θ and cos 3θ. (This shouldn’t take much work!)

(g) Let e(x) := e2πix. On the complex plane, draw (and label) the points e(1/4), e(1/2), e(−1/4), and
e(2/3).

(h) Given any k ∈ Z. Evaluate

∫ 1

0

e(kx) dx. [The answer is nice, but use caution! ]

(i) Let r4(k) denote the number of ways of writing k as the sum of four squares, i.e.

r4(k) := #{(a, b, c, d) ∈ Z4 : k = a2 + b2 + c2 + d2}

Prove that

r4(k) =

∫ 1

0

Θ(x)4 e(−kx) dx,

where Θ(z) :=
∑
n∈Z

e(n2z). [Don’t worry about details of whether or not things converge! ]

8.4 Recall that α ∈ Z[i] is a unit iff |α| = 1.

(a) Prove that the only units of Z[i] are {±1,±i}.
(b) If two nonzero elements of Z have the same magnitude, then their ratio must be a unit. Does this
also hold in Z[i]? Either prove it or give a counterexample.

(c) Let α := 27− 23i and β := 8 + i. Find κ, ρ ∈ Z[i] such that α = κβ + ρ and 0 ≤ |ρ| < |β|. (Note that
ρ is the Greek letter rho, not the Latin letter p.)

(d) Prove that the quotient-remainder theorem holds in Z[i]: given any α, β ∈ Z[i] with β 6= 0, prove
that there exist κ, ρ ∈ Z[i] such that α = κβ + ρ and 0 ≤ |ρ| < |β|.
(e) Show by example that the choices of κ and ρ in the quotient-remainder theorem for Z[i] are not
unique!
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