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Problem Set 9

9.1 The goal of this exercise is to explore the partition numbers, denoted p(n). For each n ≥ 1, let p(n) be
the number of distinct ways of writing n as the sum of a non-increasing sequence of positive integers. For
example,

5 = 5︸︷︷︸
i

= 4 + 1︸ ︷︷ ︸
ii

= 3 + 2︸ ︷︷ ︸
iii

= 3 + 1 + 1︸ ︷︷ ︸
iv

= 2 + 2 + 1︸ ︷︷ ︸
v

= 2 + 1 + 1 + 1︸ ︷︷ ︸
vi

= 1 + 1 + 1 + 1 + 1︸ ︷︷ ︸
vii

are all the ways to write 5 as a sum of a non-increasing sequence of positive integers, so p(5) = 7. We
also set

p(0) := 1 and p(n) := 0 ∀n < 0.

Although the partition numbers may seem random and artificial, they appear in many areas outside
number theory, most notably in representation theory, the theory of modular forms, and algebraic com-
binatorics. Moreover, their study led to some fundamental advances in mathematics; for example, Hardy
and Ramanujan invented the ‘circle method’ (now a major tool in analytic number theory) to study the
asymptotic growth rate of p(n).

In this exercise we’ll prove the following remarkable recurrence, discovered by Euler:

(♥) p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− p(n− 22) + · · ·

Hopefully this looks familiar: recall from class that

(♣)
∏
k≥1

(1− xk) = 1− x− x2 + x5 + x7 − x12 − x15 + x22 + · · ·

(a) Compute p(7) in two different ways: first by using Euler’s recurrence (♥), and then directly from the
definition.

(b) Let bk := k(3k−1)
2 denote the pentagonal numbers, and set b′k := k(3k+1)

2 . Prove that b′k = b−k for
every k ≥ 1. Thus, we can write (♣) in the form∏

k≥1

(1− xk) =
∑
`∈Z

(−1)`xb` .

(c) Prove the formula for the sum of a geometric series: whenever |r| < 1,∑
m≥0

rm =
1

1− r
.

(d) Carefully explain why ∏
k≥1

(1− xk)−1 =
∑
j≥0

p(j)xj .

[Hint: use part (c)! ]

(e) Write (∑
`∈Z

(−1)`xb`

)∑
j≥0

p(j)xj

 = c0 + c1x + c2x
2 + c3x

3 + · · ·

Show that cn =
∑
k∈Z

(−1)kp(n− bk).

(f) Prove Euler’s recurrence relation (♥).
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9.2 Recall from class that the set {(b2−a2, 2ab, b2 +a2) : a, b ∈ Z} contains all primitive pythagorean triples.

(a) Find an example of pythagorean triple not contained in this set.

(b) Prove that (b2 − a2, 2ab, b2 + a2) is a primitive pythagorean triple iff (a, b) = 1 and a and b have
opposite parity.

(c) Prove that every n ≥ 3 that isn’t ≡ 2 (mod 4) is in a primitive (nontrivial) pythagorean triple.

(d) Prove that every n ≥ 3 is in a nontrivial pythagorean triple.

9.3 Find nine distinct rational points on the elliptic curve y2 = x3 + 8. [Hint: There are five rational points
that are easy to find. Now use these to generate more.]
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