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ABSTRACT. We give a relatively short proof of the Cantor-Schröder-Bernstein.

1. STATEMENT AND PROOF

Motivated by Cantor’s theory of infinite sets, we write A ≈ B to denote the existence of a bijection A → B.
In practice it can be quite difficult to construct a bijection between two sets. The Cantor-Schröder-Bernstein
theorem1 is a tool for proving the existence of a bijection without ever having to construct one.

Notation. The symbol A ↪→ B means there exists an injection of A into B, and A →→ B means there exists a
surjection of A onto B. The symbol X ⊔ Y denotes the disjoint union of X and Y , i.e. X ⊔ Y = X ∪ Y but
also connotes that X ∩ Y = ∅.

Theorem 1 (Cantor-Schröder-Bernstein). If A ↪→ B and B ↪→ A then A ≈ B.

This statement may seem intuitive, but it’s surprisingly difficult to prove. I strongly urge the reader to stop
reading here and take at least five minutes to take a stab at proving it; this is the best way I know of to appreciate
the proof given below.

The heart of the proof is contained in the following special case of the theorem:

Theorem 2. If A ↪→ B for some B ⊆ A, then A ≈ B.

Proof. Let’s call our injection f : A ↪→ B. Our goal is to partition B into two disjoint pieces, say B := Bf ⊔B,
in such a way that

f(B) ⊆ B and f(A \B) = Bf . (1)

I first claim that the existence of such a partition of B implies the theorem.
To see this, note that the second condition in (1) tells us that f maps A \ B surjectively onto Bf . Since

we’re given that f is injective, we deduce that f produces a bijection between A \ B and Bf . If f happens to
also be a bijection from B to B, we’d be done, since f would then be a bijection of A onto B! However, our
first condition in (1) doesn’t imply that f is a bijection from B to B. There is one function that is an obvious
bijection of B onto B: the identity map on B. This inspires us to cobble together a function g : A → B by
setting

g(x) :=

{
f(x) if x ∈ A \B
x if x ∈ B.

I claim that g is a bijection from A onto B.
Note that g(x) ∈ Bf iff x ∈ A \B and g(x) ∈ B iff x ∈ B. From the definition it’s clear that g surjects onto

B, since it surjects onto each of the two pieces Bf and B. In particular, g−1(y) is nonempty for all y ∈ B. Now
pick any y ∈ B; since B = Bf ⊔ B, we have y ∈ Bf xor y ∈ B. If y ∈ Bf , then g−1(y) ∈ A \ B. If y ∈ B,
then g−1(y) = y ∈ B. Since g is injective into each of Bf and B individually, we conclude that g : A ↪→ B. In
other words, g is a bijection from A onto B, so A ≈ B as claimed!

1So named because it was first proved by Dedekind; see the Wikipedia article for a history of the theorem.



All that remains to do is to define Bf and B so that they partition the set B and satisfy the hypotheses (1).
We start with the former:

Bf :=
⊔
n≥1

fn(A \B),

where fn means f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

. Then we have

f(A \B) = f
(
(A \B) ⊔Bf

)
= f(A \B) ⊔ f

(⊔
n≥1

fn(A \B)

)
= Bf .

The definition of B is now forced upon us:
B := B \Bf .

We need to check that this satisfies (1). Pick any y ∈ Bf . Then y ∈ fn(A \B) for some n ≥ 1, whence

f−1(y) ∈ Bf ⊔ (A \B).

Thus for any x ̸∈ Bf ⊔ (A \B) we have f(x) ̸∈ Bf . It follows that

f(B \Bf ) ⊆ B \Bf

as claimed. This concludes the proof of Theorem 2. □

Proof of Cantor-Schröder-Bernstein. Given f : A ↪→ B and g : B ↪→ A, set

A′ := g(B) ⊆ A.

By Theorem 2, A ≈ A′. But also, since g is injective, A′ ≈ B. Thus A ≈ B. □
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