
REAL ANALYSIS: LECTURE 4

SEPTEMBER 18TH, 2023

1. PRELIMINARIES

Ok, so where were we? Last class we began listing properties (axioms) of R, and we wish to continue until
we uniquely define R. To recap, here’s the axioms we’ve written already:

(A1) ∃+ : R× R → R
(A2) + is associative
(A3) + is commutative
(A4) ∃ additive identity, denoted 0
(A5) ∃ additive inverses. We’ll denote the additive inverse of x by −x. Notice the word “the” is only allowed

since we proved additive inverses are unique.
We call any set G with an operation + that satisfies (A1)-(A5) is called an abelian group. You will study

this much more in abstract algebra. In fact, (A6) - (A10) is basically the exact repeat for an operation ·
(multiplication).

(A6) ∃· : R× R → R
(A7) · is associative
(A8) · is commutative
(A9) ∃ multiplicative identity, denoted 1 (with 1 ̸= 0: otherwise R could be 0).

(A10) For every x ̸= 0,∃ a multiplicative inverse. We’ll denote the multiplicative inverse of x by x−1 (or 1
x
).

Finally, we have a property connecting + and ·, know as the distributive property:
(A11) Distributive property: x · (y + z) = x · y + x · z.

Any set F with two operations + and · that satisfy (A1) - (A11) is called a field.
Here Emily asked an interesting question: does (A11) tell us that (meta-analytically) multiplication is re-

peated addition, i.e. that 2 · 2 = 2 · (1 + 1) = 2 · 1 + 2 · 1 = 2 + 2? In fact, it tells us even more! For example,
π · e still somehow retains this connection with addition, though the intuition isn’t as clear.

Ok, let’s use these axioms to prove something analytically:

Proposition 1. If S satisfies (A1) - (A11) (i.e. if S is a field), then

x · 0 = 0 ∀x ∈ S

Take 1: (False Proof!)

Proof. Suppose ∃x ∈ S s.t. x · 0 ̸= 0. Choose any y ∈ S. Then

x · 0 ̸= 0

x · (y +−y) ̸= 0 by definition of additive inverse

x · y + x · (−y) ̸= 0 by distributing
x · y +−x · y ̸= 0 hmm...

but xy + −(xy) = 0 by definition of additive inverse. Ideally this would be the contradiction we wanted, but
Annie realized that we can’t assume (and never proved) −(x · y) = x · −y. In other words, we want to be able
to “pull out” the negative sign, i.e. that −y = −1 · y. Ok, let’s try again. □

Take 2.0 (Yana’s Correct Proof!):
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Proof.

x · 0 = x(0 + 0) since 0 = 0 + 0

x · 0 = x · 0 + x · 0 by distributing

−(x · 0) + x · 0 = (x · 0 + x · 0) +−(x · 0) by adding additive inverses

0 = (x · 0 + x · 0) +−(x · 0) definition of additive inverses

0 = (x · 0) + (x · 0 +−(x · 0)) by associativity
0 = x · 0 + 0 by definition of additive inverse
0 = x · 0 by definition of additive identity.

□

Notice that we use distributivity. Intuitively we had to use distributivity, since distributivity is the only
axiom connecting addition and multiplication, and our proposition concerns the connection between the two
(really, between the additive identity and multiplication). Here’s a more rigorous way to see that distributivity
is necessary in the proof of our proposition:

Example 1. Consider S = {0, 1} where + is addition mod 2 and · is such that
(1) 0 · 0 = 1
(2) 0 · 1 = 0
(3) 1 · 0 = 0
(4) 1 · 1 = 1

It turns out S as defined satisfies (A1) - (A10) but fails (A11) (check this yourself!). However here 0·0 = 1 ̸= 0!

So, did we define R? Nope, there’s still lots of stuff that satisfy (A1)-(A11) (i.e. R isn’t the only field).
Here’s some examples of fields.

(1) R under usual +, ·
(2) Q under usual +, ·
(3) Z (mod 2) under +, · mod 2
(4) Z (mod 7) under +, · mod 7

Here Z (mod 7) means the set {0, 1, 2, 3, 4, 5, 6} and a+ b (mod 7) means add a+ b normally (if a = 6, b = 4
then a+ b = 10) then subtract 7 until you get to something in the set 10− 7 = 3 ∈ Z (mod 7). Multiplication
modulo 7 is exactly analogous. If a = 6, b = 4 then a·b = 24 then subtract 7 three times to get to 24−7−7−7 =
3 ∈ Z (mod 7), which means a · b (mod 7) = 3. The analogy here is “clock addition”: if today is Monday what
day is it in 10 days? One can literally count 10 days, but it’s easier to know 10 (mod 7) = 3, which tells us that
in 10 days it will be the same day it is 3 days from now (i.e. Thursday).

Ok, so we’re not done defining R yet. Let’s keep going.

2. ORDER AXIOM

Recall our intuition about the next axiom has to do with relations between two arbitrary numbers. Specifi-
cally, given x, y ∈ R, one of x or y is at least as large as the other. Formally, there is a trichotomy: exactly one
of

(1) x > y
(2) x = y
(3) x < y

holds. We can’t literally use this as (A12) since we have no idea what > means, but let’s try to capture it.

Intuition 1. What do > and < mean? Here’s some initial thoughts:
(1) x > y ⇐⇒ x− y is positive
(2) x < y ⇐⇒ x− y is negative (i.e. y − x is positive)
(3) x = y ⇐⇒ x− y = 0.



This indicates that is suffices to define positive. Let’s do this.

(A12): ∃P ⊆ R s.t.
(i) P is closed under + and ·

(ii) Trichotomy: ∀x ∈ R exactly one of the following hold
(a) x ∈ P
(b) −x ∈ P
(c) x = 0

We can extend this to establish some notation. If x ∈ P then x is positive. If −x ∈ P then x is negative.
x > 0 means x ∈ P, and x < 0 means −x ∈ P.

Now, our first theorem. Get ready for some real math:

Theorem 1. 1 > 0.

Ok, before jumping into a proof let’s brainstorm:

Intuition 2. Lexi suggested to use the fact that 1 ̸= 0. Thus by trichotomy, either 1 ∈ P or −1 ∈ P. Edith also
noticed that, for every positive number x, 1 · x ∈ P.

All this inspired Miles to come up with a proof. First, he restated a lemma Ben had mentioned earlier:

Lemma 1. For all x ∈ R we have −1 · x = −x.

Taking this lemma on faith—it’s on this week’s problem set!—we have the following proof of our theorem
(actually the proof below incorporates a correction of Miles’ original proposal, due to Annie):

Proof of Theorem. Suppose −1 ∈ P. By the above lemma, −1 · −1 = −(−1) = 1 (since additive inverses are
unique!). Since P is closed, −1 · −1 = 1 ∈ P, which contradicts trichotomy (we cannot have both 1 ∈ P and
−1 ∈ P). Thus −1 /∈ P, so once again by trichotomy, 1 ∈ P. □

Next time we’ll see that Z (mod 2) doesn’t satisfy (A12), i.e. it doesn’t have an order.
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