
MATH 350: LECTURE 6

1. Last Time

Recall we added (A12) to our list of axioms characterizing R:
(A12) ∃P ⊆ R (which we call the positive reals) s.t.

(i) if x, y ∈ P then x+ y ∈ P and x · y ∈ P (the positive reals are closed under addition

and multiplication)

(ii) Trichotomy: ∀x ∈ R exactly one of the following holds:

x = 0 x ∈ P − x ∈ P

We then saw that this notion of positivity induces an order on R.

Definition. x < y iff y − x ∈ P.

We can use this definition to easily recover many familiar properties, e.g.,

Proposition 1.1. If a > 0 and x > y, then ax > ay.

Proof. a, x− y ∈ P =⇒ a(x− y) ∈ P =⇒ ax− ay ∈ P =⇒ ax− ay > 0. □

At this point, we’ve eliminated many of our impostors, including F2 and C. The most

familiar sets satisfying (A1)− (A12) are Q and R. Some other sets we considered:

• R∖Q (the irrational numbers)? Cameron pointed out that the set of irrationals isn’t

closed under multiplication since
√
2 ·

√
2 = 2. It is also not closed under addition:√

2 + (−
√
2) = 0.

• (Noam) {a+ b
√
2 : a, b ∈ Q}. It turns out this does satisfy (A1) - (A12)!

2. Distinguishing R from Q

Question: What distinguishes R from Q? What does R have that Q doesn’t?

Theorem 2.1.
√
2 ∈ R∖Q

Proof (Meta-analytic). Suppose
√
2 ∈ Q, say

√
2 = a

b
with a, b ∈ Z and b ̸= 0. Then

2 =
a2

b2
=⇒ 2b2 = a2 =⇒ a2 is even =⇒ a is even =⇒ a = 2c for some c ∈ Z

=⇒ 2b2 = a2 = (2c)2 = 4c2 =⇒ b2 = 2c2 =⇒ b2 is even =⇒ b is even
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In words, we’ve proved:

If we express
√
2 as a fraction, both the numerator and denominator must be even. (♣)

By itself, this isn’t a contradiction: 2
4
is a perfectly reasonable fraction with both numerator

and denominator being even. However, given any such fraction, we can always reduce it:

√
2 =

a/2
b/2

with a/2, b/2 ∈ Z

But now (♣) applies again, so both a
2
and b

2
must be even, implying

√
2 =

a/4
b/4

with a/4, b/4 ∈ Z.

We can repeat this process as many times as we’d like; in particular, for any positive integer

k we deduce
a

2k
,
b

2k
∈ Z

But the only integer divisible by arbitrarily large powers of 2 is zero, so a = b = 0. This

contradicts our initial assumption that b ̸= 0, and we conclude. □

Remark. We could start by assuming a/b is an irreducible fraction, which means we arrive

at a contradiction when we find that both a and b are even. The advantage of the above

approach is that it doesn’t require us to make that somewhat mysterious starting assumption.

Here is an alternate proof:

Proof 2 (meta-analytic). Suppose
√
2 = a

b
. Then we have 2 = a2

b2
=⇒ b2 | a2 (i.e., a2 is a

multiple of b2) =⇒ b | a =⇒
√
2 = a

b
∈ Z. But 1 <

√
2 < 2. □

One happy feature of this proof is that, with very little modification, it produces a much

more general result:

Proposition 2.2. For any n ∈ Z, either
√
n ∈ Z or

√
n /∈ Q.

Clearly R and Q are different since
√
2 is in Q but not in R. But what sort of axiom could we

introduce that would account for this distinction? Intuitively, we know the real line should

be “continuous”, while we’ve just seen that Q has “holes” in it, e.g., at
√
2. Schematically,

Q √
2

R

How might we go about approximating
√
2? William suggested we pick a number, square it,

and then repeatedly refine our estimate based on whether the result is less than or greater
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than 2. For example,

(1.3)2 = 1.69 < 2

(1.4)2 = 1.96 < 2

(1.5)2 = 2.25 > 2

(1.41)2 < 2

(1.42)2 > 2

...

Really what we’re doing here is taking a sequence of rational numbers (recall that terminating

decimals must be rational!) that gets closer to
√
2 from the left (or the right). This process

actually motivates a way to define
√
2.

Idea: Consider A := {x ∈ Q : x2 ≤ 2}. Then maybe
√
2 := maxA? But this isn’t quite

right. All of the elements in A are rational, so the maximum would also be rational, but

we’ve just proved that
√
2 is not rational. Rather than thinking about

√
2 as the largest

object in the set, we can think of it as the smallest object bigger than the set. We formalize

this idea in the following axiom:

(A13) Given any nonempty A ⊆ R that is bounded above, ∃a ∈ R that’s

a least upper bound on A.

What does it mean to be a least upper bound?

Definition (Wyatt + Nathan). We say w ∈ R is an upper bound of S iff w ≥ x ∀x ∈ S.

We say n is a least upper bound of S iff n is an upper bound of S and n ≤ w ∀ upper

bounds w.

Example 1. Consider the closed interval [0, 1] := {x ∈ R : 0 ≤ x ≤ 1}. This set has many

upper bounds: 2, 1, πe, · · · . What about the least upper bound? William suggested 1, but

how do we know this?

Proof (Jenny). 1 is the largest element in [0, 1], hence an upper bound. Therefore, any x < 1

is strictly smaller than something in the set, so it cannot be an upper bound of [0, 1]. □

This led Juan to ask about the open interval:

Example 2. What is the least upper bound of (0, 1) := {x ∈ R : 0 < x < 1}? Armie

proposed that the least upper bound is still 1. Clearly 1 is an upper bound on the set, so

we just need to show that anything strictly smaller than 1 can’t be upper bound. Harris

provided the following proof:

Proof. Pick any x < 1. If x ≤ 0, it isn’t an upper bound, so we may assume x > 0. Problem

(6) in Problem Set 3 implies the existence of some α ∈ R with x < α < 1. This implies

α ∈ (0, 1) and is strictly larger than x, which means x cannot be an upper bound of (0, 1). □
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Notation. The least upper bound of A is denoted lub A in the book, but this is weird and

unappetizing, so we will denote it supA (short for “supremum”), which is the conventional

term used today.

Remark. The above examples illustrate an important point about the supremum: supA
might live in A or it might not live in A:

sup (0, 1) = 1 /∈ (0, 1) sup [0, 1] = 1 ∈ [0, 1].

Denis asked how this axiom eliminates Q. Observe that (A13) tells us that for any subset

of R that has a supremum, i.e. that the supremum lives in R. From our above example, we

have {x ∈ Q : x2 ≤ 2} ⊂ Q, but the supremum of this set is
√
2, which does not live in Q,

hence Q ̸= R.
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