REAL ANALYSIS: LECTURE 7

SEPTEMBER 28TH, 2023

1. PRELIMINARIES

We began with a brief remark about proofs:
Remark. Suppose you wanted to prove that $A \Longrightarrow B$. There are two general options:
(1) Suppose A. Super smart math stuff. . And therefore, by the quantum crypto AI theorem, B. This is a direct proof.
(2) Suppose not B. Then equally super smart math. . Therefore, not A. This is a contrapositive proof. This is basically saying (if A then B is equivalent to if not B then not A). In fancy math language,

$$
(A \Longrightarrow B) \Longleftrightarrow(\neg B \Longrightarrow \neg A)
$$

where $\neg A$ is the negation of A, i.e. not A.

Notice that you cannot suppose B and prove A !

This doesn't work out. Here's an example. If you are a math major, then you take real analysis. Notice that the converse is: if you take real analysis, you are a math major. This is not true! Plenty of non-math majors take real analysis.

Previously, on real analysis. We discussed induction and proved 1 is the smallest element of $\mathbb{Z}_{\text {pos }}$ and $\mathbb{Z}_{\text {pos }}$ are closed under + . Here's a statement similar to induction:

2. STRONG INDUCTION

Proposition 1 (Strong Induction). Suppose $S(n)$ is a sequence of logical assertions, one for each $n \in \mathbb{Z}_{\mathrm{pos}}$, such that
(i) $S(1)$ is true, and
(ii) $S(k)$ must be true whenever $S(j)$ is true \forall positive integers $j<k$.

Then, $S(n)$ is true $\forall n \in \mathbb{Z}_{\text {pos }}$.
Notice here you have a stronger requirement than in ordinary induction: rather than requiring the single condition $S(k-1)$ being true to deduce the truth of $S(k)$, we now need to know that all the statements $S(j)$ with $j<k$ are true in order to imply the truth of $S(k)$.

Let's show an example of using strong induction. We begin with a definition:
Proposition 2. $\mathbb{Z}_{\mathrm{pos}}$ is well-ordered.
To make sense of this, we first have to define what it means to be well-ordered:
Definition (Well-Ordered). A set $S \subseteq \mathbb{R}$ is well-ordered iff every nonempty subset of S has a least element.
Thanks to Jon for the catch that the subset can't be empty. In other words, a set $S \subseteq \mathbb{R}$ is well-ordered if you can "order" every nonempty subset of S. For example, $\{1,2\} \subseteq \mathbb{R}$ is well-ordered. Miles gave an example that isn't well-ordered: \mathbb{R} itself. Notice $\mathbb{R} \subseteq \mathbb{R}$, but \mathbb{R} doesn't have a least element.

What about $[0,1]$? Is it well-ordered? Nope: Harry pointed out that $(.5, .6) \subseteq[0,1]$ has no least element. Another example of a set that isn't well-ordered (provided by Lexi) is \mathbb{Z}; there's no smallest integer.

Proof of Proposition 2. We proceed by strong induction, which means we need to come up with a sequence of logical assertions and show the relevant conditions hold.

Suppose $A \subseteq \mathbb{Z}_{\text {pos }}$ has no least element. Let $S(n)$ be the logical assertion $n \notin A$. We proved 1 is the least element in $\mathbb{Z}_{\text {pos. }}$. So, if $1 \in A, 1$ would be the least element of A. Thus, $1 \notin A$, i.e. $S(1)$ is true.

Suppose $S(j)$ is true for every positive integer $j<k$. This means that $j \notin A \forall j<k$, or equivalently, that every element of A must be at least as large as k. Thus if $k \in A$, it would be the least element of A ! This would contradict the definition of A, so $k \notin A$. In other words, we've deduced $S(k)$ is true. By strong induction, $S(n)$ is true for every positive integer n, which means $A=\emptyset$. Thus, $\mathbb{Z}_{\text {pos }}$ are well ordered!

In general, it makes sense to use strong induction when you must know all of the previous $S(j)$, not just the last piece of information $S(k-1)$.

Let's take a step back. We constructed \mathbb{R}, and from there created $\mathbb{Z}_{\mathrm{pos}}, \mathbb{Z}, \mathbb{Q}$. However, we don't really know about relationships between these. Our intuition, on the other hand, understands strong relationships between these sets. For example, we know intuitively that every $x \in \mathbb{R}$ can be approximated pretty well by an integer. Let's prove a formalized version of this:

Proposition 3. $\forall x \in \mathbb{R}, \exists N \in \mathbb{Z}$ and $\alpha \in[0,1)$ s.t.

$$
x=N+\alpha .
$$

Moreover, N and α are uniquely determined by x.

For example, $\pi=3+0.1415926 \ldots$ (here $N=3, \alpha=0.14159$). Further, the only (N, α) that fulfill the above proposition are 3 and 0.14159 ; these choices of N and α are uniquely determined by x. Intuitively, how can we prove this?

Well, given x, how can we find N and α.
Jenna proposed a nice argument for existence of N and α. Consider all the integers $>x$. By well-ordering there's a least integer m in this set. Then $m-1$ is the greatest integer $\leq x$, so $N=m-1$. Then we can find α by $\alpha=x-N$.

Next, Edith suggested a nice argument for uniqueness. Suppose there are two pairs $(N, \alpha),(M, \beta)$ with $x=N+\alpha=M+\beta$. If N and M are different, then their difference is at least 1 , but the difference between α and β is at most 1 !

Ok, let's prove this.
Proof. We'll assume $x \geq 1$, and you'll prove $x<1$ on your homework. Let

$$
J:=\left\{n \in \mathbb{Z}_{\mathrm{pos}}: n>x\right\}
$$

Since $\mathbb{Z}_{\text {pos }}$ are well ordered, J has a least element $m \in \mathbb{Z}_{\text {pos }}$. Then set $N:=m-1, \alpha=x-N$. We claim that
(i) $N \in \mathbb{Z}_{\text {pos }}$
(ii) $N \leq x$
(iii) $\alpha \in[0,1)$

Proof of (i): We know $m \in \mathbb{Z}_{\text {pos }}$. Here's a quick lemma:
Lemma 1. If $m \in \mathbb{Z}_{\text {pos }}, m-1 \in \mathbb{Z}_{\text {pos }} \cup\{0\}$.
Proof. Proved in Chapter 6 of the book.
Proof of (i): By the above lemma it suffices to show $N \neq 0$. Since $x \geq 1$, we get $m>x \geq 1$, which means $N=m-1>0 \Longrightarrow N \neq 0$. So, $N \in \mathbb{Z}_{\text {pos }}$.

Proof of (ii): Notice $m>m-1=N \notin J$ but is in $\mathbb{Z}_{\mathrm{pos}}$, which means $N \leq x$.

Proof of (iii) $\alpha=x-N \geq 0$. Also,

$$
\begin{aligned}
\alpha & =x-N \\
& =x-m+1 .
\end{aligned}
$$

Since $x<m$, we get $x-m<0$, which from above tells us $x-m+1<1$.

It looks like we're done with the proof of existence of N and α, but Miles pointed out a fundamental issue. Our entire argument rested on finding the least element of J, but to be able to do this we need to know that $J \neq \emptyset$, which we never proved! In essence, the claim is that there are arbitrarily large positive integers. We'll prove this next class

