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1. PRELIMINARIES

We began with a brief remark about proofs:

Remark. Suppose you wanted to prove that A =⇒ B. There are two general options:
(1) Suppose A. Super smart math stuff. . . And therefore, by the quantum crypto AI theorem, B. This is a

direct proof.
(2) Suppose not B. Then equally super smart math. . . Therefore, not A. This is a contrapositive proof.

This is basically saying (if A then B is equivalent to if not B then not A). In fancy math language,

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A),
where ¬A is the negation of A, i.e. not A.

Notice that you cannot suppose B and prove A!
This doesn’t work out. Here’s an example. If you are a math major, then you take real analysis. Notice that

the converse is: if you take real analysis, you are a math major. This is not true! Plenty of non-math majors
take real analysis.

Previously, on real analysis. We discussed induction and proved 1 is the smallest element of Zpos and Zpos

are closed under +. Here’s a statement similar to induction:

2. STRONG INDUCTION

Proposition 1 (Strong Induction). Suppose S(n) is a sequence of logical assertions, one for each n ∈ Zpos,
such that

(i) S(1) is true, and
(ii) S(k) must be true whenever S(j) is true ∀ positive integers j < k.

Then, S(n) is true ∀n ∈ Zpos.

Notice here you have a stronger requirement than in ordinary induction: rather than requiring the single
condition S(k − 1) being true to deduce the truth of S(k), we now need to know that all the statements S(j)
with j < k are true in order to imply the truth of S(k).

Let’s show an example of using strong induction. We begin with a definition:

Proposition 2. Zpos is well-ordered.

To make sense of this, we first have to define what it means to be well-ordered:

Definition (Well-Ordered). A set S ⊆ R is well-ordered iff every nonempty subset of S has a least element.

Thanks to Jon for the catch that the subset can’t be empty. In other words, a set S ⊆ R is well-ordered if you
can “order” every nonempty subset of S. For example, {1, 2} ⊆ R is well-ordered. Miles gave an example that
isn’t well-ordered: R itself. Notice R ⊆ R, but R doesn’t have a least element.

What about [0, 1]? Is it well-ordered? Nope: Harry pointed out that (.5, .6) ⊆ [0, 1] has no least element.
Another example of a set that isn’t well-ordered (provided by Lexi) is Z; there’s no smallest integer.
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Proof of Proposition 2. We proceed by strong induction, which means we need to come up with a sequence of
logical assertions and show the relevant conditions hold.

Suppose A ⊆ Zpos has no least element. Let S(n) be the logical assertion n ̸∈ A. We proved 1 is the least
element in Zpos. So, if 1 ∈ A, 1 would be the least element of A. Thus, 1 ̸∈ A, i.e. S(1) is true.

Suppose S(j) is true for every positive integer j < k. This means that j ̸∈ A ∀j < k, or equivalently, that
every element of A must be at least as large as k. Thus if k ∈ A, it would be the least element of A! This would
contradict the definition of A, so k /∈ A. In other words, we’ve deduced S(k) is true. By strong induction,
S(n) is true for every positive integer n, which means A = ∅. Thus, Zpos are well ordered! □

In general, it makes sense to use strong induction when you must know all of the previous S(j), not just the
last piece of information S(k − 1).

Let’s take a step back. We constructed R, and from there created Zpos,Z,Q. However, we don’t really know
about relationships between these. Our intuition, on the other hand, understands strong relationships between
these sets. For example, we know intuitively that every x ∈ R can be approximated pretty well by an integer.
Let’s prove a formalized version of this:

Proposition 3. ∀x ∈ R,∃N ∈ Z and α ∈ [0, 1) s.t.

x = N + α.

Moreover, N and α are uniquely determined by x.

For example, π = 3 + 0.1415926 . . . (here N = 3, α = 0.14159). Further, the only (N,α) that fulfill the
above proposition are 3 and 0.14159; these choices of N and α are uniquely determined by x. Intuitively, how
can we prove this?

Well, given x, how can we find N and α.
Jenna proposed a nice argument for existence of N and α. Consider all the integers > x. By well-ordering

there’s a least integer m in this set. Then m− 1 is the greatest integer ≤ x, so N = m− 1. Then we can find
α by α = x−N .

Next, Edith suggested a nice argument for uniqueness. Suppose there are two pairs (N,α), (M,β) with
x = N + α = M + β. If N and M are different, then their difference is at least 1, but the difference between
α and β is at most 1!

α

xN m m+ 1 m+ 2

Ok, let’s prove this.

Proof. We’ll assume x ≥ 1, and you’ll prove x < 1 on your homework. Let

J := {n ∈ Zpos : n > x}.

Since Zpos are well ordered, J has a least element m ∈ Zpos. Then set N := m− 1, α = x−N . We claim that
(i) N ∈ Zpos

(ii) N ≤ x
(iii) α ∈ [0, 1)

Proof of (i): We know m ∈ Zpos. Here’s a quick lemma:

Lemma 1. If m ∈ Zpos,m− 1 ∈ Zpos ∪ {0}.

Proof. Proved in Chapter 6 of the book. □

Proof of (i): By the above lemma it suffices to show N ̸= 0. Since x ≥ 1, we get m > x ≥ 1, which means
N = m− 1 > 0 =⇒ N ̸= 0. So, N ∈ Zpos.

Proof of (ii): Notice m > m− 1 = N ̸∈ J but is in Zpos, which means N ≤ x.



Proof of (iii) α = x−N ≥ 0. Also,

α = x−N

= x−m+ 1.

Since x < m, we get x−m < 0, which from above tells us x−m+ 1 < 1.

It looks like we’re done with the proof of existence of N and α, but Miles pointed out a fundamental issue.
Our entire argument rested on finding the least element of J , but to be able to do this we need to know that
J ̸= ∅, which we never proved! In essence, the claim is that there are arbitrarily large positive integers. We’ll
prove this next class □


	1. Preliminaries
	2. Strong Induction

