
MATH 350: LECTURE 7

1. Last Time

Recall we added our final axiom for defining the real numers:

(A13): If S ⊆ R is nonempty and bounded above, then supS ∈ R, where sup denotes the

least upper bound of S.

This allows us to distinguish between Q and R, e.g.,
√
2 := sup{x ∈ R : x2 ≤ 2}.

Note that this set is nonempty since 1 lives in it, and it is bounded above, e.g. by 2. Noam

asked how we know that the supremum of this set actually squares to 2. You will explore

this later on!

2. Greatest Lower Bound

(A13) seems like it should have a natural analog: the existence of a “greatest lower bound”.

Do we need another axiom for this? No! It turns out we can use (A13) to prove the existence

of greatest lower bounds on sets that are bounded below.

Claim. If S ⊆ R is nonempty and bounded below, then ∃ a greatest lower bound, or infi-

mum, of S, denoted inf S, i.e., inf S ∈ R.

Proof ideas:

• (Divij) Let S ′ be the set of all additive inverses of S. Then inf S = − supS ′.
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• (Someone??) Create S ′ of all things ≤ S. Hope supS ′ = inf S.
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Divij’s approach is very nice, and will appear on this week’s problem set. Here we’ll prove

this using the second idea, because the proof will illuminate some useful proof mechanics.

Proof. Suppose S is nonempty and bounded below. Let S ′ := {x ∈ R : x ≤ a ∀a ∈ S}, i.e.
the set of all lower bounds of S. S ′ ̸= ∅ by hypothesis, and S ′ is bounded above by any

b ∈ S (we know such a b exists since S ̸= ∅). Then (A13) =⇒ supS ′︸ ︷︷ ︸
α

∈ R.

Want to show: α is greatest lower bound of S

To do this, we need to show two things:

(i) α is a lower bound of S

(ii) α is at least as big as every lower bound of S

To show (ii), observe that α = supS ′ =⇒ ∀x ∈ S ′, x ≤ α. If y is a lower bound of S, then

y ∈ S ′, hence y ≤ α.

[Note: Here we’ve only used that α is an upper bound on S ′. We have not used the fact that

it is the least upper bound. So we should expect to use the least-ness of α to show (i).]

Now let’s prove (i): α = supS ′ =⇒ α ≤ any upper bound of S ′ =⇒ α ≤ u ∀u ∈ S (since

any u ∈ S is an upper bound on S ′ by definition of S ′). Thus, α is a lower bound of S. □

3. Defining Zpos,Z,Qpos,Q

We’ve defined R to be any set satisfying (A1) - (A13). (You will show in an upcoming

problem set that any set satisfying (A1) - (A13) is R, up to renaming things). But what

about other familiar sets, like the natural numbers or the rationals? Do we need new axioms

for these? It turns out we can extract these sets from our definition of R! All we really need

to do is define the positive integers Zpos. If we define Zpos, then we can define

• Z := Zpos ∪ {x : −x ∈ Zpos} ∪ {0}

• Qpos := {ab−1 : a ∈ Zpos, b ∈ Zpos}
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• Q := Qpos ∪ {x : −x ∈ Qpos} ∪ {0}.

What is Zpos? Evan proposed that it’s all the numbers that are some number of ones added

together, i.e.

{1, 1 + 1, 1 + 1 + 1, . . . }
To define this formally, we introduce the notion of successor sets.

Definition. A successor set is any S ⊆ R s.t.

(i) 1 ∈ S

(ii) n ∈ S =⇒ n+ 1 ∈ S

Meta-analytic examples of successor sets: Zpos, Q, {all multiples of 1/2}, R, . . . . These all

work, but most of them except for Zpos have a lot of extra stuff in them. Informally, Zpos is

the smallest/“purest” successor set. This inspires our formal definition of Zpos.

Definition. Zpos :=
⋂

successor
sets S

S

This means Zpos ⊆ S ∀ successor sets S.

Nicole asked if something like F7 is a successor set. It kind of looks like one since it apparently

satisfies both criteria given in the definition, but it is not a subset of R, so it is not one.

4. Induction

For those who have used induction to prove things before, the definition of successor set

may have looked suspiciously like induction. This is not an accident; we use this definition

of the positive integers in terms of successor sets to prove the validity of induction.

Proposition 4.1. Given assertions indexed by elements of Zpos, say a(1), a(2), a(3), . . . . If

(i) a(1) is true and

(ii) whenever a(n) is true, a(n + 1) is true,

then a(m) is true for all m ∈ Zpos.

Proof. Let S := {m ∈ Zpos : a(m) is true } be a set satisfying the two conditions above.

Then S is a successor set. We claim S = Zpos. S ⊆ Zpos by definition of S. Zpos ⊆ S since

Zpos is a subset of all successor sets S. □

Here’s an example of induction in action.
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Proposition 4.2. 1 is the least element of Zpos.

Proof. Let a(n) be the assertion n ≥ 1. Then a(1) is true since 1 ≥ 1. Suppose a(n) is true,

i.e., n ≥ 1. Then n+ 1 ≥ 1 + 1 > 1 + 0 = 1 =⇒ a(n+ 1) is true. By induction, a(m) true

∀m ∈ Zpos. □
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