REAL ANALYSIS: LECTURE 9

OCTOBER 5TH, 2023

1. Real Real Analysis Theorem

Last time, we were in the process of proving the following:
Theorem 1. $\exists \alpha \in \mathbb{R}$ s.t. $\alpha^{2}=2$.
Proof. Let

$$
A:=\left\{x \in \mathbb{R}: x^{2}<2\right\}
$$

and set $\alpha:=\sup A \in \mathbb{R}$, since its existence is guaranteed by the fact that $1 \in A$ and 27 is an upper bound on A. Here's a lemma:
Lemma 1. If $\alpha^{2}>2$, then $\exists \epsilon>0$ s.t. $(\alpha-\epsilon)^{2}>2$.
Before proving this lemma, let’s deduce $\alpha^{2} \ngtr 2$ from assuming this claim. If $\alpha^{2}>2$, then by the above lemma $\exists \epsilon>0$ s.t. $\alpha-\epsilon$ would be an upper bound on A, which contradict that $\alpha-\epsilon<\alpha$ is the least upper bound. Thus, $\alpha^{2} \ngtr 2$ as long as we can prove this lemma, which we’ll do now:
Proof. Suppose $\alpha^{2}>2$. By the Archimedean Property, $\exists n \in \mathbb{Z}_{\text {pos }}$ s.t. $n>\frac{2 \alpha}{\alpha^{2}-2}$, which implies

$$
\begin{aligned}
\frac{1}{n} & <\frac{\alpha^{2}-2}{2 \alpha}<\frac{\alpha^{2}-2}{2 \alpha-1 / n} \\
& \Longrightarrow \frac{2 \alpha}{n}-\frac{1}{n^{2}}<\alpha^{2}-2 \\
& \Longrightarrow\left(\alpha-\frac{1}{n}\right)^{2}=\alpha^{2}-\frac{2 \alpha}{n}+\frac{1}{n^{2}}>2
\end{aligned}
$$

We can use an analogous idea on the other side:
Lemma 2. If $\alpha^{2}<2$, then $\exists \epsilon>0$ s.t. $(\alpha+\epsilon)^{2}<2$.
After some scratchwork, a couple of proof attempts, and some work by Edith, Lexi, Emily, Sean, Aidan, Miles, Jon, Forrest, and more, we get the following:
Proof. Suppose $\alpha^{2}<2$. By Archimedean Property, pick $n \in \mathbb{Z}_{\text {pos }}$ s.t. $\frac{1}{n}<\frac{2-\alpha^{2}}{3 \alpha}$. Recall $\alpha=\sup A$ and that $1 \in A$, which implies $\alpha \geq 1$. Thus, $\alpha \geq 1 \geq \frac{1}{m} \forall m \in \mathbb{Z}_{\text {pos }}$. Using this inequality we get

$$
1 / n<\frac{2-\alpha^{2}}{3 \alpha}=\frac{2-\alpha^{2}}{2 \alpha+\alpha} \leq \frac{2-\alpha^{2}}{2 \alpha+1 / n} .
$$

Simplifying as before, we find $\left(\alpha+\frac{1}{n}\right)^{2}<2$. Fixing $\epsilon=\frac{1}{n}$ we have found some $\epsilon>0$ s.t. $(\alpha+\epsilon)^{2}<2$.
[NOTE. The choice to use $\frac{2-\alpha^{2}}{3 \alpha}$ was somewhat arbitrary; we could have easily used something else, for example $\frac{2-\alpha^{2}}{2 \alpha+1}$, and the proof would have gone through just as well. The takehome lesson here is, in analysis, you don't have to find the right choice; any choice that makes the proof work is good enough.]

Given the above lemma, we are essentially done. Assume $\alpha^{2}<2$. By choosing ϵ as above, we get that $\alpha+\epsilon \in A$, which means that $\alpha+\epsilon>\alpha$ is not an upper bound. This contradicts α being the least upper bound. This is a contradiction that tells us $\alpha^{2} \nless 2$. By trichotomy, it must be that $\alpha^{2}=2$, and we are done!

One important lesson from our initially flawed attempts at proof is the following: if you know $a<b$ and $a<c$, you cannot deduce anything about the relationship between b vs. c ! To make our proof work, we started with a known inequality $b<c$, and used the Archimedean Property to generate an inequality of the form $a<b$; this then forced $a<c$.

It turns out that our theorem, and the approach we took, generalize considerably (this is Theorem 7.5 in the book):

Theorem 2. $\forall n, k \in \mathbb{Z}_{\mathrm{pos}}, \exists \sqrt[n]{k} \in \mathbb{R}$. In other words, nth roots exist.
Remark. The proof in the book is complicated-see the course website for Leo's take on the proof-but the ideas are all the same as what we just carried out, so make sure you understand the case of $\sqrt{2}$ before reading the proof of Theorem 7.5.

2. Rationals between Reals

Q: Given $\alpha, \beta \in \mathbb{R}$ with $\alpha<\beta$. We know there's a real number between them, but does there exist $q \in \mathbb{Q}$ s.t.

$$
\alpha<q<\beta .
$$

Notice you cannot simply average $\frac{\alpha+\beta}{2}$, since α, β might not be rational.
Proposition 1. For any nonempty interval $(\alpha, \beta) \subseteq \mathbb{R}$,

$$
\mathbb{Q} \cap(\alpha, \beta) \neq \emptyset
$$

In other words, if $\alpha, \beta \in \mathbb{R}$ and $\alpha<\beta$, there exists a rational number strictly between them.
Scratchwork. Let's look at a picture.

Annie noted that if $\alpha, \beta \in \mathbb{Q}$ this is easy! We can just take the midpoint, argue it's between, and argue it's a fraction. Lexi noted that if $\beta-\alpha>1$, there should be some integer in (α, β). So, if there's a "long interval" we should be good.

Alex had the following idea: suppose $\beta-\alpha<1$

Then multiply by some large n (Archimedean Property!):

Now $n \beta-n \alpha>1$, which means there should be some integer m in between $n \alpha$ and $n \beta$, which means that

$$
\begin{align*}
n \alpha & <m<n \beta \tag{2.1}\\
\alpha & <\frac{m}{n}<\beta, \tag{2.2}
\end{align*}
$$

and we've found our rational number!
But this assumes we can find an integer m in the interval. This is certainly intuitive, but how can we actually do it? Well we have the following picture:

Ben observed that we have a way of creating an integer in this interval: simply take the floor of n β ! Unfortunately, this doesn't necessarily produce an integer strictly inside the interval, since $n \beta$ might be an integer already. Instead, we follow [???]'s suggestion to take the floor of $1+n \alpha$. Guided by the picture, we're now prepared for a formal argument:

Proof. Given $\alpha, \beta \in \mathbb{R}$ s.t. $\alpha<\beta$. By the Archimedean Property, $\exists n \in \mathbb{Z}_{\text {pos }}$ s.t. $n>\frac{1}{\beta-\alpha}$. Thus,

$$
n(\beta-\alpha)>1 \Longrightarrow n \beta>1+n \alpha
$$

Consider $\lfloor 1+n \alpha\rfloor \in \mathbb{Z}$. We know

$$
\lfloor 1+n \alpha\rfloor \leq 1+n \alpha<\lfloor 1+n \alpha\rfloor+1
$$

Notice that taking the right inequality and subtracting 1 gets us

$$
n \alpha<\lfloor 1+n \alpha\rfloor .
$$

This, combined with the left inequality, tells us that

$$
n \alpha<\lfloor 1+n \alpha\rfloor \leq 1+n \alpha
$$

Finally, $1+n \alpha<n \beta$ (the interval is greater than 1). All together we get

$$
n \alpha<\lfloor 1+n \alpha\rfloor \leq 1+n \alpha<n \beta
$$

which means that $\lfloor 1+n \alpha\rfloor$ is in between $n \alpha$ and $n \beta$. It's also an integer! We deduce

$$
\frac{\lfloor 1+n \alpha\rfloor}{n} \in(\alpha, \beta) \cap \mathbb{Q} .
$$

Note that this argument not only tells us existence of a rational in the interval, but tells us how to find one: for all large n, the fraction $\frac{\lfloor 1+n \alpha\rfloor}{n}$ will lie in the interval!

