
MATH 350: LECTURE 12

1. Review

Last time, we gave the following definitions:

Definition. A ≈ B if and only if ∃f : A ↪→→ B a bijection, i.e. ∀b ∈ B, ∃!a ∈ A s.t. f(a) = b.

Definition. We say f : A ↪→ B is an injection iff f(a) = f(a′) implies a = a′. (Informally,

∀b ∈ B there is at most one a ∈ A s.t. f(a) = b.)

Definition. We say f : A →→ B is a surjection iff ∀b ∈ B ∃a ∈ A s.t. f(a) = b. (Informally,

∀b ∈ B, there’s at least one a ∈ A s.t. f(a) = b.)

To prove that a function is a bijection, you need to prove that is both injective and surjective.

Notation. We use ↪→ to denote an injection and →→ to denote a surjection. We combine

the two as ↪→→ to denote bijection.

2. Comparing Sizes of Sets

Armed with these notions, we can define some familiar terms more rigorously.

Definition. We say a set A has n elements, denoted |A| = n, iff A ≈ {k ∈ Zpos : k ≤ n}.
Also, |∅| = 0.

Definition. A is finite iff ∃n ∈ Zpos s.t. |A| = n or A = ∅. A is infinite iff A is not finite.

Next we tried to formalize what it means for a set A to be at least as large as another set

B. After several proposals and a lot of back and forth, we settled on the following

Definition. A is at least as large as B iff ∃f : B ↪→ A.

Intuitively, if B ↪→ A, then all the elements in B must map to different elements in A, which

means there must be enough things in A to go around. Equivalently, A →→ B, but we will

almost always state things in terms of injections / bijections.

Example 1. Zpos ↪→ [0, 1] via the map n 7→ 1
n

Example 2. (0, 1) ↪→ [0, 1] via the map x 7→ x

Date: October 21, 2024.
Template by Leo Goldmakher.



Last time, we had the intuition that [0, 1] ≈ (0, 1), so we should also be able to find an

injection [0, 1] ↪→ (0, 1). Armie provided the mapping x 7→ 1
2
x+ 1

4
, which shrinks the closed

interval down to half its size and shifts it over by 1/4. To check that this is in an injection,

we assume there are x, y ∈ [1, 0] which map to the same thing. We have

1

2
x+

1

4
=

1

2
y +

1

4
=⇒ x = y,

so this works! We might think intuitively that if you can find an injection between two

sets in both directions, then they must be the same size. This turns out to be true, but it

is surprisingly non-trivial to prove. It is a result known as the Cantor–Schröder–Bernstein

theorem, because it was first proved by Dedekind.

Theorem 2.1 (Cantor–Schröder–Bernstein). If ∃f : A ↪→ B and ∃g : B ↪→ A, then A ≈ B.

You can read a full write up of this proof on the course website. This theorem is very useful

in practice because it’s usually much easier to find two separate injections than it is to find

a single bijection (but you cannot use this on this week’s problem set!).

Recall that we saw informally that Qpos ≈ Zpos, but we gave a very handwavey argument

that you could tabulate the rationals and then sweep diagonally across the table. It turns

out that there is an explicit bijection Zpos ↪→→ Qpos. Consider

S(x) :=
1

2 ⌊x⌋ − x+ 1

For example, S(0) = 1, S(1) = 1/2, S(1/2) = 2, etc. It turns out that the sequence

S(0), S(S(0))︸ ︷︷ ︸
=:S2(0)

, S(S(S(0)))︸ ︷︷ ︸
=:S3(0)

, . . .

consists of each positive rational appearing exactly once, thus giving us a bijection between

Zpos and Qpos via the map n 7→ Sn(0). A proof of this will be posted to the course website.

3. An Unexpected Tangent

Thomasina asked the following question: given A,B is it always the case that at least one of

A ↪→ B or B ↪→ A is true? In other words, are any two sets comparable (using our notions

of comparing sizes of sets)?

This turns out to be true if you accept what’s called the axiom of choice, which is the

assertion that, given an infinite number of sets, you can choose something from every set,

i.e., you can create a new set which intersects all of your infinite sets in exactly one place.

The axiom of choice might seem like it should be obviously true, but it has a bunch of bizarre

consequences. One such result is the Banach-Tarski paradox: there exists a way to divide a

solid ball of radius 1 into 5 pieces that you can take apart and put back together (without
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changing the shapes of any of these 5 pieces) to get two solid balls, each of radius 1. Another

consequence of Banach-Tarski: if you take a solid soccer ball, there exists a way of cutting

it into finitely many pieces and then putting them back together to get a solid ball the size

of the sun.

These results seem impossible, but it turns out the proof of Banach-Tarski is relatively

straightforward, and the only questionable step in the proof is an invocation of the axiom

of choice. It turns out that the statement in Thomasina’s question (that there is always an

injection between two sets) is equivalent to the axiom of choice.

4. Game of 15

Problem 7.9 on the HW asserts R is the unique complete ordered field, i.e. the only set

satisfying axioms 1-13. Now, this is not literally true because we could, say, relabel R in

Hungarian. Hungarian R is a little different because the elements have different names, but

it is the same underlying set with the same underlying structure. But it would be silly to

say that, from a mathematical perspective, this is a different set!

To illustrate this concept, we played a few rounds of the Game of 15. In the Game of 15,

two players take turns choosing from the numbers 1 through 9, without replacement. The

goal is to be the first person with exactly 3 numbers (any three) that sum to 15.

Game 1: Leo vs. Students. Leo starts with 5, Students follow with 7. Leo chooses 2,

forcing Students to choose 8 to block him from getting 15. The game continues like this and

ends in a draw.

L : 5, 2, 6, 3, 1

S : 7, 8, 4, 9

Game 2: Leo vs. Alice. Alice goes first with 8, and the game proceeds in a similar

manner, ending in a draw.

A : 8, 6, 9, 4, 7

L : 5, 1, 2, 3

Game 3. Leo vs Jackson. Jackson starts with 5. Leo chooses 1. Jackson picks 2. Leo

blocks with 8. Jackson blocks 6. But now Jackson can make 15 by choosing 4 (5 + 6 + 4)

or 7 (2 + 6 + 7). Leo chooses 4, but Jackson wins by choosing 7.

J : 5,

=15︷ ︸︸ ︷
2, 6, 7

L : 1, 8, 4
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Nathan observed that this game feels like tic-tac-toe, even though it doesn’t look like tic-

tac-toe. Denis added that we could turn it into tic-tac-toe by numbering a tic-tac-toe board

with the digits 1 through 9. Jason pointed out we’d need the rows and columns to sum to

15. Here is a way to do this:

8 1 6

3 5 7

4 9 2

This is called a 3 × 3 magic square: each row, column, and the two main diagonals sum

to 15. Now it is not hard to see that the Game of 15 is really just tic-tac-toe on the magic

square. For example:

Leo vs. Students

8 1 6

3 5 7

4 9 2

× ×××

Leo vs. Jackson

8 1 6

3 5 7

4 9 2
××
××

Mathematicians say that the Game of 15 is isomorphic to tic-tac-toe. They are the same

game, just played with different symbols. All of this is to say, what problem 7.9 is really

saying is that R is unique up to isomorphism! The concept of isomorphism is fundamental

throughout mathematics.

5. Size

We took a brief digression to look at another way of thinking about the “size” of a set.

For example, we saw that the interval (0, 1) is uncountably infinite, but it is also natural

to say (0, 1) has length 1. We could imagine making this formal by, say, subtracting the

supremum from the infinimum. Similarly, [0, 1] has length 1. More generally, the length of

any nonempty interval (a, b) has length b− a.

But how would we measure the length of a set that’s not an interval? For example, what’s

the length of Q? We know R is uncountable while Q is countable, so we expect Q to be

minuscule compared to R. In fact, we claim the length of Q is 0. The idea of the proof is to

cover all of Q by intervals, the sum of whose lengths is tiny. Let’s see how this works.

Proof idea. Since Q is countable, we can write Q = {q1, q2, q3, . . . }. (Make sure you under-

stand this step, and why one can’t make a similar claim about R.) We will enclosed each

of these points inside an open interval, as follows. First, create an open interval around q1
of length 1, e.g. the interval (q1 − 1/2, q1 + 1/2). Next, create an open interval around q2 of

length 1
2
, another around q3 of length 1

4
, and more generally, an open interval around qn of

length 1
2n−1 .
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q3 q1 q2
( )

1
8

1
8

( )

1
2

1
2

( )

1
4

1
4

The sum of the lengths of all of these intervals is

≤ 1 +
1

2
+

1

4
+

1

8
+ · · · = 2

(recall that this quantity is a “geometric series”). Note that we asserted that the sum of

all the lengths of these intervals is ≤ 2 (as opposed to equal to 2) because some of these

intervals might overlap.

Now observe that our choice to start with an interval of length 1 around q1 was arbitrary;

we could have started with an interval of length 1
1000

, which would have led to the sum of all

the lengths being ≤ 1
500

. In this way, we see that we can cover all of Q by intervals whose

total length is arbitrarily small! Since we expect the length of anything to be nonnegative,

and the only nonnegative number bounded above by arbitrarily small positive quantities is

0, we conclude that 0 is the only meaningful length we can assign Q. □
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