
REAL ANALYSIS: LECTURE 13

OCTOBER 23rd, 2023

1. SET THEORY

Today we’re going to finish up our discussion about sizes of sets, and then we’re going to move on to
sequences and limits. Recall last time we proved Cantor’s theorem, specifically that

Theorem 1 (Cantor’s Theorem). P(A) is strictly larger than A.

Thus, there are actually infinitely many different sizes of infinity. How? Just keep applying the powerset
operation:

A ≺ P(A) ≺ P(P(A)) ≺ P(P(P(A))) ≺ · · · ,
where A ≺ B means B has size strictly larger than A. So, can we say that two uncountable sets are actually
the same size? Yup! In the same way as before by finding a bijection between the two.

On your homework, you will show that

P(A) ≈
{
f : A → {0, 1}

}
.

We can use this to sketch a proof that

Proposition 1. P(Zpos) ≈ [0, 1].

Non-rigorous sketch of proof idea. Let

{0, 1}Zpos := {f : Zpos → {0, 1}} .

Then, by HW we get that
P(Zpos) ≈ {0, 1}Zpos

Thus it suffices by transitivity to show that {0, 1}Zpos ≈ [0, 1]. Given f ∈ {0, 1}Zpos , we can think of f as a
string:

f = 01101111010010101 · · · ,
where the nth term in f is actually f(n). So here f(1) = 0, f(2) = 1, f(3) = 1, etc. We can interpret the
binary string of f as a number x ∈ [0, 1] written in binary. Thus, any f ∈ {0, 1}Zpos corresponds to some
x ∈ [0, 1], and given any x ∈ [0, 1] you can write it in binary, which will correspond to a f ∈ {0, 1}Zpos . □

Remark. There’s a very subtle reason why this proof actually doesn’t quite work:
decimal expansion (or binary expansion) is not unique.

For example, notice that
.1 = .09.

However, something similar to our idea can be made to work out.

Here’s another subtle yet important point:

Remark. The set of arbitrarily long decimal expansions in [0, 1] is countable—Matt pointed out that any finite
expansion (no matter how long) is rational. Thus, we require infinitely long decimal expansions to make [0, 1]
uncountable.
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Ok, last thing about sets. We’ve established that Zpos ≺ [0, 1]. Is there anything in between? Is there any set
A s.t.

Zpos ≺ A ≺ [0, 1].

It turns out there’s a famous conjecture known as the Continuum Hypothesis. Here’s the precise formulation:

Theorem 2 (Continuum Hypothesis). NO.

The Continuum Hypothesis conjectures there isn’t any such set A. Then later there was this super weird
result by Gödel that says the following:

You cannot disprove the Continuum Hypothesis using axioms of set theory.

Then later on Paul Cohen proved another part

You cannot prove the Continuum Hypothesis using axioms of set theory.

Somehow the Continuum Hypothesis is independent from the (Zermelo-Frankel) axioms of set theory. In
other words, the Continuum Hypothesis is provably unprovable. Here’s another crazy thing Gödel proved. An
axiomatic system is consistent if you can’t derive contradictions (i.e. you can prove A and not A). Then there
must be a statement independent of the system that is formulated completely within the bounds of the system.
In other words, any consistent axiomatic system is not complete.

Finally, there’s also the Generalized Continuum Hypothesis, which basically just says there does not exist
any set strictly between A and P(A). This conjecture is solved when A is finite, but not known otherwise.

There was also a good question about why this was named the Continuum Hypothesis. Cantor called the size
of Zpos “aleph-null” (ℵ0) and called the size of [0, 1] the “continuum” (c).

2. INTERLUDE ON PROBLEM 7.9

Before moving on to the next big part of the course: sequences/limits, Problem 7.9 asks you to prove that R
is unique, i.e. axioms 1-13 uniquely define R. But in fact, this isn’t really true. To showcase this we played a
game, called the Game of 15. You are given the numbers 1, 2, 3, . . . 9. The rules are you take turns picking one
of the numbers remaining. The goal is to have 3 numbers that sum to 15.

Game 1. Challenger 1: Edith. Move one. Leo takes number 5. Edith counters with 6. Leo picks 8, which
forces Edith to choose 2. Leo is forced to pick 7, which forces Edith to pick 3. Leo picks 1, Edith is forced to
pick 9, and the only number remaining is 4, which goes into Leo’s list. The game is a draw: neither Edith nor
Leo have collected any three numbers that sum to 15.

Next up, Jenna’s turn:

Game 2. Challenger 1: Jenna. Move one. After some group brainstorm, Jenna starts with 5, Leo counters with
3, Jenna double counters with 8, and we ended up in a draw again!

Several people pointed out that this game feels like Tic-Tac-Toe. But what’s the connection? Consider the
leftmost array below, called a 3× 3 magic square:

8 1 6
3 5 7
4 9 2

−→
8 1 O6
3 X5 7
4 9 2

−→
X8 1 O6
3 X5 7
4 9 O2

−→
X8 1 O6
O3 X5 X7
4 9 O2

−→
X8 X1 O6
O3 X5 X7
4 O9 O2

−→
X8 X1 O6
O3 X5 X7
X4 O9 O2

This arrangement of the numbers 1–9 has the property that each of its rows, columns, and main diagonals sum
to 15. If we play tic-tac-toe on this magic square, this is equivalent to playing the game of 15! The above
diagram illustrates the game between Leo and Edith as it unfolded.

Summarizing, the game of 15 is literally the same as Tic-Tac-Toe, played with different symbols. Mathe-
maticians describe this situation using a fancy word: the game of 15 is isomorphic to Tic-Tac-Toe; i.e. they are
secretly the same, despite looking different on the surface.



Problem 7.9 asks you to prove that the real numbers are unique up to isomorphism: any two sets that satisfy
(A1-A13) must be isomorphic. For example, you can say the real numbers in Spanish or English, but they’re
still basically the same up to what we call the elements.

Ok, now on to limits and sequences!

3. LIMITS AND SEQUENCES

Here’s a formal definition of a sequence:

Definition (Sequence). A sequence is a function from Zpos → R.

Example 1. For example,

an =
n+ 100

3n+ 1
.

Despite putting an in the subscript, we can still think of ”plugging” in n, just like a function.

Remark. Notice that all sequences are infinite by definition.

What about limits? If an = n+100
3n+1

then intuitively

lim
n→∞

an = 1/3,

since as n gets big the dominating term is proportional to 1/3. What does this actually mean?
Here we started brainstorming, with proposals / modifications by a number of students, including Lexi, Sean,

Ben, Gabe, Harry, Miles, and more. The first proposed interpretation was:
lim
n→∞

an = 1
3

means that as n gets closer and closer to infinity,

an gets closer and closer to 1
3

without reaching it.
Right away, Leo objected to the use of “infinity”. (“Infinite” is an adjective we’ve defined to describe the size
of a set, but “infinity” as a noun isn’t even a thing.) Here’s the fixed up version:

lim
n→∞

an = 1/3 means that as n gets arbitrarily large,

an gets closer and closer to 1/3 without reaching it.
Actually, a sequence is allowed to reach its limit, e.g. the constant sequence an = 1/3 has limit equal to 1/3.
So, let’s remove that condition:

lim
n→∞

an = 1/3 means that as n gets arbitrarily large, an gets closer and closer to 1/3.

This looks terrific! But notice that an is getting smaller as n gets larger (a1 ≈ 25, a2 ≈ 14, a3 ≈ 10, a4 = 8,
etc), so our proposed definition above would also imply that limn→∞ an = −17: as n gets bigger, an gets closer
and closer to −17. We need to keep thinking!

Maybe we can say as n gets arbitrarily large then an − 1/3 gets closer and closer to 0, but once again, the
same is true for an − (−17). To fix this issue, Gabe proposed:
lim
n→∞

an = 1/3 means that as n gets arbitrarily large, an gets “closest” to 1/3 but not to any other number.

Of course this is still informal, but it eliminates the issue of an approaching −17. However, consider the
following sequence1

cn =

{
1 if n is even
3− 1

n
if n is odd.

This sequence gets “closest” to 1, but also the limit is not 1.
By now, we were all convinced that the notion of limit is more subtle than it first appears. We’ll start next

class with a precise definition of a limit, and this will serve as a foundation for most of the material in the rest
of the course.

1Note from Leo: This example is a slightly different than the one I gave in class, to highlight the subtlety.
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