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OCTOBER 30TH, 2023

1. PRELIMINARIES

Recall we have defined and practiced with the formal notion of a limit:

Definition (Limit). Given (an), we say lim
n→∞

an = L iff ∀ϵ > 0, ∃N ∈ R such that |an − L| < ϵ for all n ≥ N .

CAUTION! Some very similar-looking statements are not equivalent to this. For example, consider the follow-
ing statement:

∃N ∈ R such that ∀n ≥ N, |an − L| < ϵ for every ϵ > 0. (†)
This contains all the same quantifiers and relations as our definition of limit, but in a slightly different order.
But the only sequences (an) satisfying (†) are those that are eventually constant... which is far too restrictive!
(Make sure you understand this point.) The difference between (†) and the actual definition of a limit is that
in the latter you’re given a “tolerance” ϵ, and the goal is to find an N ∈ R such that beyond that point, all the
an are within the given tolerance of L. In particular, N depends in some way on the choice of ϵ. In (†), by
contrast, there’s a global N that works for every single ϵ > 0.

Last time we also looked at some examples. For example, we proved that the limit of the sequence (−1)n

doesn’t exist by showing
lim
n→∞

(−1)n ̸= L ∀L ∈ R.

Before discussing new material, we set up some convenient notation.

1.1. Notation. Let’s go over some notation.
(1) We’ll say an → L (read: an tends to L) iff lim

n→∞
an = L.

(2) We’ll say (an) converges iff ∃L ∈ R s.t. an → L.
(3) We’ll say (an) diverges iff it doesn’t converge.

1.2. Limits are Unique. We’ve been talking about “the” limit of (an). Let’s actually prove that using the
definite article is accurate:

Proposition 1 (Uniqueness of limit). If an → L and an → L′, then L = L′.

Scratchwork 1. Thanks to Miles and Lexi for help with these ideas! Here’s a picture of what we’re looking at:

L L′a1 a4a3a2

So, why can’t we have L ̸= L′. Well, (an) gets “really close” to L (an ≈ L for all large n) and also (an) gets
“really close” to L′ (an ≈ L′ for all large n). Thus, if take n large,

L ≈ an ≈ L′,

which means |L− L′| small. To formalize this sorta transitive ≈ thing, we’ll use the triangle inequality, which
states that

|x+ y| ≤ |x|+ |y|
for every x, y ∈ R. Remember the triangle from last lecture summary! The best way to go from point A to B is
to go straight! It’s longer to take a “detour” and go from A to C to B.
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Proof of Proposition 1. Given ϵ > 0. Then ∃N ∈ R s.t.

|an − L| < ϵ

2

for all n > N . Similarly, ∃N ′ ∈ R s.t.

|an − L′| < ϵ

2
for all n > N ′. Then for any n > max{N,N ′},

|L− L′| = |L− an + an − L′|
≤ |L− an|+ |an − L′|
< ϵ/2 + ϵ/2 = ϵ.

Observe that L − L′ doesn’t depend on n (or N or N ′) at all—it’s just some real number. We’ve just proved
that |L− L′| < ϵ for all positive ϵ; by Problem Set 7(1), this implies L = L′. □

Remark. Let’s take a second look at the last line here:

|L− L′| = |L− an + an − L′|
≤ |L− an|+ |an − L′|
< ϵ/2 + ϵ/2 = ϵ.

Here, |L − L′| is capturing our scratchwork that L ≈ L′. The way we want to prove this is to show that they
both should be close to an, so we artificially insert an. Now we’re good, since we know how an relates to L
and how an relates to L′. This is a second illustration of the power of triangle inequality.

1.3. Algebra of Limits. Consider

lim
n→∞

n

n+ 2
= 1.

You could just do a normal ϵ proof, but here’s another (high school-esqe) way of thinking about this. Notice
that

n

n+ 2
=

1

1 + 2
n

.

We want to be able to write the following (meta analytic):

lim
n→∞

n

n+ 2
= lim

n→∞

1

1 + 2
n

=
1

lim
n→∞

(
1 + 2

n

) =
1

1 + lim
n→∞

2
n

=
1

1 + 2 lim
n→∞

1
n

= 1,

since lim
n→∞

1/n = 0. Why is this useful? Well, it allows us to reduce harder problems to ones we already
understand. However, this assumes we can do these operations on limits, which from our crazy ϵ definition is
totally not clear. However:

Proposition 2. If an → A, bn → B, we have
(i) lim

n→∞
an + bn = A+B

(ii) lim
n→∞

an − bn = A−B

(iii) lim
n→∞

anbn = AB

(iv) lim
n→∞

an
bn

= A
B

as long as B ̸= 0 and bn ̸= 0 ∀n large.

Note that an + bn is literally a new sequence, defined by cn := an + bn, and similarly for the other parts of the
proposition.

These are all proved in the book. It turns out (i) and (ii) are not too bad, but the others are a bit more
interesting. To appreciate the book’s proofs of (iii) and (iv), we tried our hand at (iii) in class. Here’s a good
place to start; why does the natural thing to do not work?



Scratchwork 2. If an → A then an ≈ A for large n. Similarly, we get bn ≈ B for large n. Thus,

|an − A| < tiny

|bn −B| < tiny

One natural thing to do is multiply them, which gets us

|anbn + AB − anB − bnA| < tiny.

This is certainly true! But, unfortunately what we want is

|anbn − AB| < tiny.

Ok, let’s try a different approach:

Scratchwork 3. Emily and Edith proposed the following idea:

bn|an − A| < bnϵ

A|bn −B| < Aϵ

Ignoring the absolute values and adding these together would give

anbn − AB < tiny

which is the shape of result we want. But, they also pointed out some troublesome points:
(1) Is Aϵ actually tiny? Jenna says yes! A is a constant, but ϵ can get arbitrarily small.
(2) What about bn(an − A)? Now bn is not a constant. It moves around. However, Annie noted that we do

know it converges, and therefore it must eventually be ≈ B.
(3) Can we really just “ignore” the absolute values? Well, no, of course. But here’s a reinterpretation:

anbn − AB = anbn − Abn + Abn − AB

= bn(an − A) + A(bn −B),

and we maybe can convince ourselves that this is the sum of two tiny terms, and it’s a clear mathemat-
ical fact that tiny + tiny = tiny.

Let’s make this last point more precise. If |bn| < some bound, then by making |an − A| < ϵ
2(some bound) and

making |bn − B| < ϵ
2|A| we would derive |anbn − AB| < ϵ

2
+ ϵ

2
= ϵ. The only issues left are (a) figuring out a

bound on |bn|, and (b) avoiding division by 0 (e.g. in our bound on |bn −B| above).

Armed with a strategy, we’re ready to construct a formal proof!

Proof. First, we’ll prove a bound on bn: since bn → B, we have

|bn −B| < 1

for all large n. By triangle inequality we deduce that

|bn| ≤ |bn −B|+ |B| < 1 + |B|
for all large n.

Now fix ϵ > 0. For all large n we have

|bn −B| < ϵ

2|A|+ 1
and |an − A| < ϵ

2(|B|+ 1)
.

It instantly follows that
|A(bn −B)| < ϵ

2
and |bn(an − A)| < ϵ

2
Now we’re done: for all large n,

|anbn − AB| < |anbn − Abn + Abn − AB| ≤ |bn(an − A)|+ |A(bn −B)| < ϵ

2
+

ϵ

2
= ϵ. □
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