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1. PRELIMINARIES

Recall last time we saw that limits “play nice” with the field operations (+,−, ·,÷), i.e.

Proposition 1. If an → A and bn → B, we have
(i) lim

n→∞
(an + bn) = A+B

(ii) lim
n→∞

(an − bn) = A−B

(iii) lim
n→∞

(anbn) = AB

(iv) lim
n→∞

an
bn

= A
B

as long as B ̸= 0 and bn ̸= 0 ∀n large.

However, R is much more than just a field—it’s a (actually, the) complete ordered field! Do limits respect the
other structural aspects of R? For example, do limits play nice with order?

1.1. Limits and Order.

Proposition 2. Given convergent sequences (an), (bn) s.t. an ≤ bn ∀n. Then lim
n→∞

an ≤ lim
n→∞

bn.

Remark. It’s slightly informal to say
lim
n→∞

an

to denote L, where an → L. This is because we only defined the notation

lim
n→∞

an = L;

we never actually defined what lim
n→∞

an means in isolation! Since we proved last time that limits are unique,
however, we can now use this informal notation without danger of ambiguity.

Ok, let’s think about proposition 2. It’s enough to show (ETS) the following:

Proposition 3. Given convergent (cn) s.t. cn ≥ 0. Then lim
n→∞

cn ≥ 0.

To prove Proposition 2, we just need to prove Proposition 3 since we can take cn := bn − an and use what
we know about the algebra of limits. The advantage of proving Proposition 3 is that it’s simpler: it’s phrased
in terms of a single sequence, rather than in terms of two different sequences.

Ben proposed a proof of Proposition 3. Here’s the idea:

Scratchwork 1. Suppose that L < 0. Is it possible for an → L? Here’s a picture.

L 0 a2 a3 a1 . . .

By this picture it’s clear that we’ll never be able to get within |L| of the limit! Let’s formalize this argument.

Proof. Given L < 0. Then, for any n,

|cn − L| = cn − L ≥ −L = |L|.

In particular, |cn − L| is never < |L|
2

, so lim
n→∞

cn ̸= L. □

Here’s another famous way that limits play with order.
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Theorem 1 (Squeeze Theorem). Suppose (an), (bn), (cn) are sequences s.t. an ≤ bn ≤ cn for all n. If an → L
and cn → L, then bn → L.

Remark. Here’s how to think about this: if you’re given some very complicated sequence (bn) that you can
squeeze in between two simpler sequences (an) and (cn) that converge to the same thing, then you can deduce
the limit of the complicated sequence (bn) without working too hard by just using the Squeeze Theorem.

How do we prove the Squeeze Theorem? Well, we just proved (in Proposition 2) that limits play nice with
order. Let’s just apply that proposition twice:

an ≤ bn =⇒ L ≤ lim
n→∞

bn and bn ≤ cn =⇒ lim
n→∞

bn ≤ L.

Combining these two statements, we deduce

L ≤ lim
n→∞

bn ≤ L,

whence lim
n→∞

bn = L.
Although the above proof seems straightforward, it has a major flaw (observed by Miles): Proposition 2

requires the knowledge that bn converges, which we don’t actually know! Secretly, the Squeeze Theorem is
asserting that (bn) converges (at which point the argument we gave above implies it must converge to L).

Scratchwork 2. Let’s look at a picture:

Lan
bn
cn

What’s our goal here? Well, we’re definitely going to start with: Given ϵ > 0. Then we want to do some stuff
and get to |bn −L| < ϵ. Do we know anything close to L? Sure: both an and cn are close to L for large n, and
bn is trapped between them! Thus bn must be close to L. Let’s write this down rigorously.

Proof. Given ϵ > 0. For all large n we have |cn − L| < ϵ, which is the same as saying

−ϵ < cn − L < ϵ.

But notice that bn − L ≤ cn − L, which tells us that

bn − L ≤ cn − L < ϵ. (†)

Similarly, for all large n we have
bn − L ≥ an − L > −ϵ. (‡)

Together, (†) and (‡) imply |bn − L| < ϵ for all large n. Since ϵ > 0 was arbitrary, we conclude bn → L as
claimed. □

1.2. Limits and Completeness. We’ve seen that limits play nice with field operations, and also with order.
What about with completeness, i.e. with (A13)?

As a warm up, suppose (an) is bounded above. Must it converge? Edith says no: an = (−1)n doesn’t
converge but is bounded. Is there any additional condition on (an) that would guarantee convergence? Sean
suggests that if (an) is eventually increasing and bounded above, then it should converge; Lexi made the more
precise conjecture that

lim
n→∞

an = sup{an | n ∈ Zpos}.

(Note a few differences between (an) and {an}: {an} is a set, while (an) is a sequence (i.e. a function!); {an}
might be finite, while (an) is always infinite; (an) is ordered, while {an} is not.) We quickly noted that the
Sean-Lexi conjecture can’t quite be right: consider the sequence (an) with a1 = 1000 and an = 1 − 1/n for
n > 1, which is eventually increasing but has supremum 1000, which definitely isn’t the limit. However, a
slight modification of the Sean-Lexi conjecture does turn out to hold:



Proposition 4. If (an) is always increasing and (an) is bounded above, then

lim
n→∞

an = sup{an : n ∈ Zpos}.

Scratchwork 3. Call the supremum λ. We want to show the an ≈ λ, i.e. |an − λ| < ϵ for large n. Forrest
observed that the sequence must get close to λ at some point because λ is the supremum, and the sequence
must stay close to λ thereafter because (an) is increasing. Let’s make this precise.

Proof. Given ϵ > 0. Since λ is the least upper bound, λ− ϵ isn’t an upper bound of {an}. Thus, ∃N s.t.

aN > λ− ϵ.

Since (an) increasing, an > λ− ϵ for any n > N . Rewriting we get

|an − λ| = λ− an < ϵ

for all large n. □

Similarly, if (an) is always decreasing and is bounded below, then an → inf{an : n ∈ Zpos}. You can adapt
the proof above (or deduce it as a corollary).

With all of this, we get the following proposition:

Proposition 5. If (an) is bounded and monotone, then it converges.

Remark. A sequence (an) is monotone is if it’s either always increasing or always decreasing. Here, increasing
technically should be “always non-decreasing”: an+1 ≥ an ∀n. Similarly, decreasing means an+1 ≤ an ∀n.

What about the converse? Nope. If (an) converges it may not be monotone. For example, (−1)n

n
converges

and is not monotone. However, the following is true:

Proposition 6. If (an) converges, then (an) is bounded.

Scratchwork 4. Here’s Sarah’s reasoning. Say an → L. Then an ≈ L when n ≥ N Let’s break into two
parts: there are only finitely many terms of the sequence an with n < N , so the set of these is bounded. And
the stuff after N is near L, which means it must be bounded as well!

Proof. Say an → L. Then ∃N s.t. ∀n ≥ N ,

L− 1 < an < L+ 1.

Thus, the set
{an : n > N}

is bounded between L − 1 and L + 1. Now {an : n ≤ N} is finite, hence bounded. Thus, the entire set
{an : n ∈ Zpos} is bounded, so (an) is bounded. □

Putting together our work, we obtain a famous result:

Theorem 2 (Monotone Convergence Theorem). Suppose (an) is monotone. Then (an) converges iff (an) is
bounded.
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