
MATH 350: LECTURE 16

1. Review

Recall: an → L if ∀ϵ > 0, |an −L| < ϵ for all large n. We saw last time that limits play nice

with (A1) - (A12), that is, we can do ordinary algebra with them and they preserve order.

We also proved the following proposition.

Proposition 1.1. If (an) converges, then (an) is bounded.

The idea here is that we know that for all large n, the an’s have to be within a distance ϵ

from L, which immediately gives us an upper and lower bound for the tail of the sequence.

Moreover, there are only finitely many n < N , so we can just take the maximum and

minimum an’s here to get upper and lower bounds for the beginning of the sequence, and

we conclude that the whole sequence is bounded.

2. Convergence Criteria

Since limits play nice with the first 12 axioms, we are prompted to ask whether they also

play nice with (A13). But what exactly do we mean by this? Recall (A13) states that any

non-empty subset of R that’s bounded above has a supremum in R. Is there an analogue

of this for sequences? For example, if (an) is bounded above, must it converge? Certainly

not: just consider the decreasing sequence an = −n, which is bounded above by 0. Inspired

by Proposition 1.1, we might try to impose a stronger condition: if (an) is bounded (i.e.

bounded above and below), does (an) converge? The answer is still no, as Armie pointed

out: (−1)n is bounded but does not converge. Thus we see that the clearest (albeit naive)

analogy to (A13) fails. But maybe there are some other condition(s) we can impose on (an)

to ensure convergence?

Divij proposed that if (an) is bounded and either strictly increases or stays the the same,

then we should expect it to converge.

Conjecture 2.1 (Divij). If (an) is bounded above and non-decreasing then (an) converges.

Definition. (an) is non-decreasing iff an+1 ≥ an∀n ∈ Zpos. (Sometimes this is also called

increasing.)
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So far, our only model for proving convergence is to start with a guess for the limit, so this

is the approach we will use here.

Proof idea. Given (an) non-decreasing and bounded above, say an ≤ M . We claim

lim
n→∞

an = sup{an : n ∈ Zpos}︸ ︷︷ ︸
A

.

Note that a sequence itself does not have a supremum, but we take the supremum of the set

of all the items of the sequence. We know the supremum exists since this set is nonempty

(e.g., it contains a1) and bounded above by assumption.

Given ϵ > 0. We know that our sequence is getting closer to A from the left. Here’s a

picture:

· · · ( ]

A− ϵ A+ ϵ

a1 a2 a3 an A

Cameron observed that it’s enough to show that the sequence eventually enters the interval

(A− ϵ, A], because the conditions we impose on the sequence ensure it can’t leave.

We first tried to proceed by contradiction, but formulating the proper statement of the

negation proved quite challenging. While it’s possible to do it this way, it turns out there’s a

more direct route using what we’ve already proved before (both in HW and on the midterm).

Proof of Divij’s conjecture. Given ϵ > 0. We claim

lim
n→∞

an = sup{an : n ∈ Zpos}︸ ︷︷ ︸
A

.

We know ∃aN ∈ (A− ϵ, A]. Then, since (an) is increasing,

n ≥ N =⇒ an ≥ aN > A− ϵ

On the other hand, A is an upper bound on the sequence, whence an ≤ A. Putting this

together, we deduce that A− ϵ < an ≤ A for all large n. We conclude that

|an − A| = A− an < ϵ. □

The same holds for (an) bounded below and non-increasing, and people often lump these

two into one single result:

Theorem 2.2 (Monotone Convergence Theorem). If (an) is monotone and bounded, then

(an) converges.

Definition. (an) is “monotone” iff it’s non-decreasing or non-increasing.
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Remark. MCT is our first intrinsic convergence criterion—you can use it to prove convergence

without knowing the limit of the sequence in advance. By contrast, all our previous work

with limits involved conjecturing a limit first, and then rigorously proving that our guess

was correct.

Henry wondered whether MCT applies to sequences that are eventually monotone but which

might have some alternating behavior at the beginning. Yes: you can prove this by lopping

off the beginning of the sequence. But in this case, the limit will not in general be the

supremum of the entire sequence, since it’s possible that the first terms are wild and get

really big before the sequence settles down into a tame increasing sequence.

To illustrate the utility of the MCT, we discussed a couple examples.

Example 1. zn := 1 +
1

22
+

1

32
+ · · ·+ 1

n2
.

This is clearly monotone, and on your HW you’ll prove it’s bounded. MCT therefore implies

(zn) converges. It turns out zn → π2

6
, which you probably wouldn’t have been able to guess—

demonstrating how useful it is to have an intrinsic criterion like the MCT! (The first person to

guess what the limit was—and then prove it, too—was a remarkable mathematician named

Euler.)

Remark. Jackson observed that the terms 1
n2 converge to zero. However, this is not enough

to show that the sum zn converges, as we’ll soon discuss.

Example 2. en :=
(
1 +

1

n

)n

.

This turns out to be bounded and increasing (good exercises!), so it converges by MCT. It

turns out en → e... which, once again, would have been very difficulty to guess!

Motivated by these examples, Cameron asked whether there’s some intrinsic convergence

criterion that doesn’t assume monotonicity? After all, most sequences in the wild aren’t

monotone!

• Lily: we could try to construct a monotone subsequence of (an), where a subsequence is

a sequence an1 , an2 , an3 , · · · with n1 < n2 < n3 < · · · .
– Denis raised an objection: it’s not obvious we can actually find a monotone subse-

quence! For example, what if there are only finitely many increasing terms in the

sequence?

• Max + Cameron: sup{an : n ≥ N} and inf{an : n ≥ N} should also converge to the limit

of the sequence as N gets large

Taking Max and Cameron’s idea and running with it, we observed a more basic phenomenon:

any convergent sequence (an) eventually starts to clump together, i.e., the terms of the

sequence get really close not only to the limit of the sequence but also to each other. Formally:

∀ϵ > 0, ∃N ∈ R s.t. m,n > N =⇒ |am − an| < ϵ
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Definition. We say a sequence (an) is “Cauchy” iff it satisfies the above condition.

It’s pretty intuitively clear why any convergent sequence is Cauchy: eventually all the terms

are close to the limit of the sequence, hence close to one another. (This isn’t hard to turn

into a formal proof; can you do it? We’ll do it below, but it’s a good exercise to stop and

try on your own here.) What’s much less clear is the converse: if a sequence starts to clump

together does that guarantee convergence? Conceivably, the sequence might wiggle back and

forth by some small amount and never quite converge. In fact, this never happens:

Theorem 2.3 (Cauchy Criterion). (an) is Cauchy iff (an) converges.

In other words, Cauchy-ness is equivalent to convergence. This is the type of intrinsic

convergence criterion Cameron was asking for: the Cauchy criterion gives us a way of proving

convergence without any foreknowledge of the limit nor any assumption of boundedness or

monotonicity. In fact, because it’s an equivalence, we can even use this to prove divergence

of a sequence, which is something we weren’t able to do with the MCT.

Example 3. Hn := 1 + 1/2 + 1/3 + · · ·+ 1/n.

Thus, for example, H1 = 1, H2 = 3/2, H3 = 11/6, · · · . The sum represented by Hn is called

the harmonic series ; we’ll address this more carefully in later lectures. For now, we prove

the following:

Claim. (Hn) diverges.

Proof. By the Cauchy criterion, it suffices to prove (Hn) isn’t Cauchy. For any k ∈ Zpos,

|H2k −Hk| = H2k −Hk

=

(
1 +

1

2
+

1

3
+ · · ·+ 1

k
+

1

k + 1
+ · · ·+ 1

2k

)
−
(
1 +

1

2
+

1

3
+ · · ·+ 1

k

)
=

1

k + 1
+ · · ·+ 1

2k

≥ 1

2k
+

1

2k
+ · · ·+ 1

2k︸ ︷︷ ︸
k terms

=
1

2

It follows that for any N ∈ R, there exist m,n > N such that |Hm −Hn| ≥ 1
2
. Thus (Hn)

isn’t Cauchy, hence doesn’t converge. □

Remark. The sequence (Hn) gives an example of a sum whose terms tend to 0, but which

doesn’t converge to anything. We will return to this subject in a future lecture.
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