REAL ANALYSIS: LECTURE 17

NOVEMBER 6th, 2023

1. PRELIMINARIES

Last time we proved the Monotone Convergence Theorem (MCT):

Theorem 1 (MCT). Given (a_n) monotone. Then (a_n) converges iff (a_n) is bounded.

Recall that (a_n) is monotone iff it's either always increasing or always decreasing, where *increasing* means $a_{n+1} \ge a_n$ for all n. So for example the constant sequence $a_n = 3$ is monotone, since always increasing (it's also always decreasing!).

Although no mention of an actual limit appears in the statement of the MCT, secretly we know that the limit of (a_n) should be $\sup\{a_n\}$ or $\inf\{a_n\}$ (depending on whether a_n is increasing or decreasing). However, the MCT allows us to prove convergence without actually specifying the limit. This can be very useful!

Example 1. Let

$$a_n := 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

e.g. $a_1 = 1, a_2 = \frac{5}{4}, \dots$ Notice $(a_n) \nearrow$ (convenient notation for saying that (a_n) is increasing). Thus, if (a_n) is bounded, MCT implies (a_n) converges. Now it's not clear how to prove that (a_n) is bounded, but at least we have a strategy that doesn't force us to determine a mysterious limit! (The limit turns out to be $\frac{\pi^2}{6}$, which is really not obvious and was discovered by Euler.)

The MCT gives us a way to tell if a sequence converges or not, without necessarily knowing the limit. However, it only applies to monotone sequences, a rather strong hypothesis.

Question 1. Does there exist any intrinsic test for convergence for sequences that aren't monotone?

Let's look at convergent sequences and try to look at their properties. Given (a_n) that converges, what can we say about (a_n) ? Lexi suggests utilizing the Squeeze Theorem, which is a good idea but relies on creating sequences that depend on (a_n) itself. Jon suggests looking at subsequences of (a_n) , which relates to a theorem in the book that all subsequences of (a_n) converges. Jenna describes that the terms of (a_n) will eventually clump together near the limit L.

Can we formalize this? Here's one idea. Jeremy suggests that the difference between subsequent terms gets small: $\forall \epsilon > 0$,

$$|a_{n+1} - a_n| < \epsilon$$

for all large n. But it's not just that subsequent terms clump next to each other. It's that all large terms clump very close to each other! In other words, $\forall \epsilon > 0, \exists N \in \mathbb{R}$ s.t.

$$|a_m - a_n| < \epsilon \qquad \forall m, n \ge N.$$

Any (a_n) satisfying this "clumping" is called a *Cauchy sequence* (first invented by Bolzano, later independently rediscovered by Cauchy). Here's an amazing theorem:

Theorem 2 (Cauchy Criterion). (a_n) converges iff (a_n) is Cauchy.

Remark. If (a_n) converges, it's very believable that (a_n) is Cauchy. However, the other side of the implication is non-obvious—why can't the sequence jiggle back and forth forever without actually converging to a single fixed number?

Notes on a lecture by Leo Goldmakher; written by Justin Cheigh.

We'll prove the Cauchy criterion next class. For now, let's look at some applications of it to appreciate its utility.

Example 2. Let's go back to the example where

$$a_n := \sum_{k \le n} \frac{1}{k^2},$$

i.e. $a_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$. We claim (a_n) is Cauchy, i.e. that for all large m, n,

$$|a_m - a_n| < \text{tiny.}$$

WLOG $m \geq n$. Then

$$a_m - a_n = \sum_{k=n+1}^m \frac{1}{k^2}$$

= $\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{m^2}.$

Each of these terms are surely small, but there are also a lot (m - n) of terms we're adding! So, why is this small?

Here's a few attempts:

Attempt 1. Here's an attempt by Gabe & Friends. Notice that

$$\frac{1}{(n+k)^2} \le \frac{1}{(n+1)^2} \tag{1.1}$$

for any $k \geq 1$. Thus,

$$|a_m - a_n| = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(m-1)^2} + \frac{1}{m^2}$$

$$< \frac{1}{(n+1)^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+1)^2} + \frac{1}{(n+1)^2}$$

$$= \frac{m-n}{(n+1)^2}.$$

The problem with this is that the upper bound can get arbitrarily large as m grows. Note that this is not saying that (a_n) is not Cauchy; rather, it says that we "gave up too much" using Inequality 1.1.

Let's try again:

Attempt 2. Here we're going to make each term slightly larger:

$$\frac{1}{(n+k)^2} < \frac{1}{(n+k-1)(n+k)},$$

since we're making the denominator smaller. But notice we can write

$$\frac{1}{(n+k-1)(n+k)} = \frac{1}{n+k-1} - \frac{1}{n+k}.$$

Let's put this together:

$$\begin{aligned} |a_m - a_n| &= \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(m-1)^2} + \frac{1}{m^2} \\ &< \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(m-2)(m-1)} + \frac{1}{(m-1)m} \\ &= \left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \dots + \left(\frac{1}{m-2} - \frac{1}{m+1}\right) + \left(\frac{1}{m+1} - \frac{1}{m}\right) \\ &= \frac{1}{n} - \frac{1}{m} < \frac{1}{n}. \end{aligned}$$

By Archimedean Property, we can thus make $|a_m - a_n|$ smaller than any positive ϵ . This idea of having the sum "telescope" and cancel each other out is known as a telescoping series.

Since the Cauchy criterion is an iff statement, we can also use it to prove that a sequence *diverges*. Here's an example:

Example 3. Consider

$$H_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

It turns out that H_n diverges. By the Cauchy criterion, it suffices to prove that there exist arbitrarily choices of m and n for which $|H_m - H_n|$ stays away from 0. Edith made this precise:

Proof. Observe that, for any n,

$$H_{2n} - H_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

> $\frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n}$
= $\frac{n}{2n} = \frac{1}{2}$.

Thus, there exist arbitrarily large choices of m, n for which $|a_m - a_n|$ is large, and therefore (a_n) is not Cauchy. By the Cauchy criterion, (a_n) must diverge.

Let's give a sketch of one last example which shows that we've all been secretly using the Cauchy criterion all our lives:

Example 4 (Infinite decimals are real numbers!). Suppose you have an infinite sequence of digits (d_n) , i.e. for each $n, d_n \in \{0, 1, 2, ..., 9\}$. Consider the sequence (α_N) of longer and longer decimals:

$$\alpha_N := 0.d_1 d_2 d_3 \cdots d_N.$$

Intuitively, we expect that α_N should converge to some real number, or in other words, that the sequence (α_N) converges. And it does! To see this, consider for example

$$|\alpha_5 - \alpha_{12}| = 0.00000d_6d_7 \cdots d_{12} < \frac{1}{10^5}.$$

Doing this with large m, n gets you something bounded below by $\frac{1}{10^n}$, which can get arbitrarily small. Thus, (α_n) is Cauchy and therefore converges.