
MATH 350: LECTURE 19

1. Review

Recall we began talking about series. We said that
∞∑
n=1

an = L if and only if SN −→ L,

where the partial sums SN are defined by

SN :=
∞∑
n=1

an.

If there exists such an L ∈ R, we say
∞∑
n=1

an converges; otherwise, it diverges.

So far, we’ve proved:

•
∞∑
n=1

1

n2
converges

•
∞∑
n=1

1

n
(harmonic series) diverges

• If
∞∑
n=1

an converges, then an −→ 0.

2. Alternating Harmonic Series

By contrast to the Harmonic series, we define the alternating harmonic series:
∞∑
n=1

(−1)n+1

n
,

Let’s write out the first several terms to get a better idea of what’s going on:

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
· · ·

Most of us agreed that this series converges. Daniel gave the following argument:
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Observe that 1
n
− 1

n+1
< 1

n2 , which gives us an upper bound on each pair of terms:

1− 1

2︸ ︷︷ ︸
<1

+
1

3
− 1

4︸ ︷︷ ︸
< 1

32

+
1

5
− 1

6︸ ︷︷ ︸
< 1

52

+ · · · < 1 +
1

32
+

1

52
+ · · ·

If we group the terms by pairs and sum over these pairs, we get something that is bounded

above by
∑∞

n=1
1
n2 , which we proved converges. This gives us an upper bound on the subse-

quence (S2N). Moreover, we know (S2N) is monotonically increasing since the sum of each

pair is positive. Hence MCT implies that (S2N) converges.

Let’s prove this rigorously.

Proof. ∀n ∈ Z,
1

n
− 1

n+ 1
=

1

n(n+ 1)
<

1

n2
.

This implies

S2N < 1 +
1

32
+

1

52
+ · · ·+ 1

(2N − 1)2
≤

2N−1∑
n=1

1

n2
≤

∞∑
n=1

1

n2
,

so (S2N) is bounded above. Also, (S2N) is increasing because ∀N ∈ Zpos,

S2(N+1) = S2N +
1

2N + 1
− 1

2N + 2
= S2N +

1

(2N + 1)(2N + 2)
> S2N

Thus (S2N) converges by MCT, say S2N −→ E. □

Let’s step back from the trees for a moment and try to see the forest. We’re trying to prove

(SN) converges, but nowhere have we said it suffices to show that (S2N) converges, so why

are we even looking at (S2N) at all? Daniel made a nice observation that gave us an easy

path to show the convergence of (S2N), which relied on its monotonicity. But (SN) is clearly

not monotone, so the path to convergence was not as clear. How might we now be able to

use the convergence of (S2N) to show that (SN) converges?

Observe that S2N−1 − S2N = 1
2N

is small, so consecutive terms seem to be clumping. Why

does this mean SN must converge? Noam gave as an idea: we know (S2N) gets close to

E, and we know that consecutive terms get close, which means we should expect the other

terms of (SN) to get close to E.

Claim. Sℓ → E

Idea: For large, even ℓ we know

Sℓ ≈ E.
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For large, odd ℓ, we know

Sℓ ≈ Sℓ+1 ≈ E.

You know what this means: triangle inequality!

Proof. Given ϵ > 0. Then ∃N s.t.

ℓ > N =⇒ |S2ℓ − E| < ϵ

2

and

ℓ >
1

ϵ
=⇒ |S2ℓ−1 − S2ℓ| =

1

2ℓ
<

ϵ

2
.

(Armie asked: doesn’t the above argument show that the sequence is Cauchy?

But recall that in a Cauchy sequence, we need any two terms in the sequence

to get close, not just consecutive terms! )

Now ∀D > max{2N, 1
ϵ
}, we have two cases:

If D is even,

|SD − E| < ϵ.

If D is odd,

|SD − E| = |SD − SD+1 + SD+1 − E| ≤ |SD − SD+1|+ |SD+1 − E| < ϵ

2
+

ϵ

2
= ϵ.

Thus, SD −→ E, whence
∞∑
n=1

(−1)n+1

n
converges. □

Nathan wondered what the series converges to. Dirichlet discovered a neat trick for comput-

ing this sum. Define

F (x) := x− x2

2
+

x3

3
− x4

4
+ · · ·

and note that
∞∑
n=1

(−1)n+1

n
= F (1).

Then

F ′(x) = 1− x+ x2 − x3 + x4 + · · · = 1

1 + x
,

so we have

F (1) = F (1)− F (0) =

∫ 1

0

F ′(x)dx =

∫ 1

0

1

1 + x
dx = log(1 + x)

∣∣∣∣1
0

= log 2.
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Hence,
∞∑
n=1

(−1)n+1

n
= log 2

But Dirichlet discovered some other, rather unsettling things about this sum. Let’s rearrange

the terms in order to sum them more conveniently:

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ · · ·

= 1− 1

2
− 1

4︸ ︷︷ ︸
1
2
− 1

4

+
1

3
− 1

6
− 1

8︸ ︷︷ ︸
1
6
− 1

8

+
1

5
− 1

10
− 1

12︸ ︷︷ ︸
1
10

− 1
12

+
1

7
− 1

14
− 1

16︸ ︷︷ ︸
1
14

− 1
16

+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+

1

14
− 1

16
+ · · ·

=
1

2
(1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ · · · )

Thus we’ve proved that the sum equals half of itself, whence

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = 0.

Huh? Didn’t we just say the sum was log 2?

Dirichlet realized that something fishy was going on. Somehow rearranging the terms of an

infinite series changes the sum. Evidently, the commutativity of ordinary addition is not a

property enjoyed by infinite sums. By the way, this should convince you of the fact that a

series is not literally a sum of infinitely many terms!

However, Dirichlet figured out the condition that guarantees you can rearrange the terms

without changing the convergence.

Theorem 2.1 (Dirichlet). Suppose
∞∑
n=1

|an| converges. Then any rearrangement of
∞∑
n=1

an

converges to the same value.

This leaves a natural question: what happens if we weaken the hypothesis? A couple decades

later, Riemann proved that Dirichlet’s hypothesis was exactly the right one:

Theorem 2.2 (Riemann). If
∞∑
n=1

an converges but
∞∑
n=1

|an| diverges, then ∀α ∈ R, there

exists a rearrangement of
∞∑
n=1

an that converges to α.
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