
MATH 350: LECTURE 20

1. Series Convergence

Last time, we answered the following question: given
∞∑
n=1

an that converges, must any re-

arrangement also converge to the same value?

As we saw, the answer in general is no. Dirichlet computed

∞∑
n=1

(−1)n+1

n
= log 2

but found a rearrangement of the series which converged to 0. But what exactly do we mean
by rearrangement?

Definition. A rearrangement of
∞∑
n=1

an is
∞∑
n=1

af(n) where f : Zpos ↪→→ Zpos.

With this formal definition, let’s revisit the theorems we stated last time.

Theorem 1.1 (Dirichlet). If
∞∑
n=1

|an| converges, then
∞∑
n=1

an converges, and every rearrange-

ment of
∞∑
n=1

an converges to the same value.

Dirichlet’s theorem doesn’t tell us anything about what happens when
∞∑
n=1

|an| doesn’t con-

verge. But Riemann proved a complement about 20 years later:

Theorem 1.2 (Riemann). If
∞∑
n=1

an converges but
∞∑
n=1

|an| diverges, then ∀α ∈ R ∪ {±∞}

there exists f : Zpos ↪→→ Zpos such that
∞∑
n=1

af(n) = α.

Date: Novemeber 18, 2024.
Template by Leo Goldmakher.



These two theorems reveal a striking dichotomy of convergent series: if the series of absolute
values converges, then the series convergence is nice and immune to rearrangment. If it
diverges, all hell breaks loose.

Because this condition on
∞∑
n=1

|an| completely characterizes the behavior of convergent series,

it deserves a name.

Definition. We say
∞∑
n=1

an converges absolutely iff
∞∑
n=1

|an| converges. We say
∞∑
n=1

an con-

verges conditionally iff
∞∑
n=1

an converges but not absolutely.

It turns out this behavior can be generalized for series in C: the set of all rearrangements of
a convergent series is either a single point, a line in the complex plane, or the entire complex
plane. This holds even more generally in vector spaces: the set of all rearrangements of a
convergent series always spans some subspace. This is called the Lévy-Steinitz theorem.

2. Alternating Series Test

Last time, we proved that the alternating harmonic series
∞∑
n=1

(−1)n+1

n

converges. Here was the big idea:

Daniel observed that a subsequence (S2N) of the partial sums is monotone and bounded and
hence, by MCT, converges, say S2N −→ A. But how did we use this to show (SN) converges?
We observed that |S2N−1 − S2N | = 1

2N
is small. Therefore, S2N−1 ≈ S2N ≈ A.

Keel put this intuition into words: if you have some subsequence that you know converges,
and you can prove that any terms not in the subsequence get close to terms in the subse-
quence, then you can prove that the sequence converges. This idea gives rise to a convergence
test that might be familiar from calculus:

Theorem 2.1 (Alternating Series Test). Given (an) monotonically decreasing with an → 0.

Then
∞∑
n=1

(−1)n+1(an) converges.

Here is a sketch of the proof:

Proof sketch.

(1) (S2N) is monotonically increasing (group by pairs: (a1 − a2) + (a3 − a4) + · · · )
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(2) S2N−1 bounded above by a1 (group by pairs differently: a1−(a2−a3)−(a4−a5)−· · · )
(3) S2N ≈ S2N−1 ∀ large N , so conclude the proof using the ϵ definition of limit conver-

gence.

Making this precise is an excellent exercise. (It’s also in the book!) □

This concludes our study of series. Now onto. . . limits?

3. Limits of Functions

We know what it means for a sequence to have a limit, but what about limits of functions?
For example, what does

lim
x→2

f(x) = 5

actually mean?

Wyatt suggested: As x gets close to 2, f(x) gets close to 5. How can we make this rigorous?
Maybe our function looks something like this:

2

5

Drawing on our knowledge of limits of sequences, Nathan started us off with a first draft:

Definition (1.0). lim
x→2

f(x) = 5 if and only if ∀ϵ > 0 ∃N such that

n > N =⇒ |f(2 + 1

n
)− 5| < ϵ and |f(2− 1

n
)− 5| < ϵ.

Max pointed out this definition only monitors the behavior of the function at a discrete set
of points. But our function might behave wildly in between these points, which is not so
great. Evan proposed we fix this by just letting 1

n
be a real number, say y. Then, instead of

n > N for some large N , we need y < δ for some small δ. Further, we noticed that we can
compress the two inequalities into one by by simply imposing |y| < δ. Putting this altogher,
we arrived at a second draft:

Definition (1.5). lim
x→2

f(x) = 5 if and only if ∀ϵ > 0 ∃δ > 0 such that

|y| < δ =⇒ |f(2 + y)− 5| < ϵ.
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This definition is better, but we can clean it up a little bit. Since the limit is a statement
about the behavior of f(x) “as x approaches 2”, we want our definition to be in terms of x,
instead of introducing a new variable y. After all, what are we really saying? Given some
tiny1 distance, we need to be able to find some other tiny2 distance such that whenever x is
within tiny2 distance from 2, f(x) is within tiny1 distance from 5. Here’s a picture:

2

5

Substituting 2 + y 7→ x, our definition above becomes:

Definition (2.0). lim
x→2

f(x) = 5 if and only if ∀ϵ > 0 ∃δ > 0 such that

|x− 2| < δ =⇒ |f(x)− 5| < ϵ.

This is starting to look pretty good. But we noticed still more issues:

(i) (Armie) What if x isn’t in the domain of f?
(ii) (Nathan) What if f(2) ̸= 5?

Let’s address Nathan’s issue first. Perhaps our function does something like this:

2

5

Certainly x = 2 is close to 2, yet f(2) is not close to 5. But we know from experience that
the limit should still be 5, so the above definition breaks. This highlights a fundamental
observation about limits:

Limits describe the behavior of a function near a point, not at a point.
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We can therefore fix our definition by simply excluding x = 2. Then our definition above
generalizes as follows:

Definition (3.0). lim
x→a

f(x) = L if and only if ∀ϵ > 0 ∃δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ϵ

This is essentially correct, but there are a couple of technical points left to deal with. We’ll
start next class by addressing Armie’s issue next lecture.
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