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1. PRELIMINARIES

Last time we talked about metric spaces, which serves as a proof of concept that we can deal with sequences
and limits with only a set equipped with a few slight properties. Now we’re going to move on and begin talking
about limits of functions.

1.1. Limits of Functions. Here’s the key idea. What does the following mean?

lim
x→2

f(x) = 5.

Intuition 1. Here’s the informal intuition. As you plug in values closer and closer to 2, the function f outputs
values closer and closer to 5. Picture time!
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Cool! Let’s ϵ the hell out of this:

Definition (Limit- Wrong Definition!).
lim
x→2

f(x) = 5

iff ∀ϵ > 0,∃δ > 0 s.t.
|x− 2| < δ =⇒ |f(x)− 5| < ϵ.

Intuition 2. Here’s the definition in English. Fix a tolerance ϵ > 0. The limit existing means if you fix this
tolerance I can find enough room (specifically δ room) such that if x is within δ of 2 (i.e. |x− 2| < δ) then f(x)
is within ϵ of 5 (i.e. |f(x)− 5| < ϵ).

Here Lexi brought up a great point. What about when f(2) ̸= 5. Here’s the picture:
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Intuitively, the limit should still be 5. But does this follow from our formal definition? No! f(2) ̸= 5 will
prevent our definition from working. Let’s fix this by just not allowing x = 2:

Definition (Limit- Also Wrong Definition!). limx→2 f(x) = 5 iff ∀ϵ > 0,∃δ > 0 s.t.

0 < |x− 2| < δ =⇒ |f(x)− 5| < ϵ.

Here the 0 < |x− 2| prevents x = 2. But, this actually doesn’t quite work as well. Consider the following:

f :Q → R
x 7→ 5.
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Ok yes technically since Q dense in R this should actually just look like f(x) = 5 (i.e. although there are gaps
in Q we can’t visibly see them), but this is the general idea. Intuitively, the limit (as x approaches anything!)
should be 5, but our current definition will fail on the technicality that f(x) wouldn’t even be well defined
(what’s f(

√
2)? Well, it doesn’t even make sense to ask that question!). Let’s just fix this by adding in we can

only plug in stuff from the domain. Ok, take 3:

Definition (Limit- Also Also Wrong Definition!). Given f : X → R. We say

lim
x→a

f(x) = L

iff ∀ϵ > 0,∃δ > 0 s.t.
0 < |x− a| < δ and x ∈ X =⇒ |f(x)− L| < ϵ.

Hmm. Here’s a really annoying function.

f :[0, 1] ∪ {2} → R
x 7→ 5.

Here’s what this looks like:
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We now can (unfortunately) prove the following:

lim
x→2

f(x) = π.

Proof. Fix ϵ > 0. Then ∀x ∈ [0, 1] ∪ {2} s.t. 0 < |x − 2| < 1
2
, we have that |f(x) − π| < ϵ. Why? Because

there are no such x’s! There is no x that simultaneously is in the domain and also is within δ = 1/2 of 2, which
means that our claim |f(x)− π| < ϵ is vacuously true. □



Ugh. Ok, so take 3 didn’t work. The problem here is that 2 is an isolated point. In other words, ∃δ > 0 s.t.

(2− δ, 2 + δ) ∩Domain(f) = {2}.
Whenever this happens our definition will fail. To fix this we will restrict it so that the a’s we’ll look at must
be accumulation points. First let’s define this:

Definition (Accumulation Point). Given X ⊆ R, we say a is an accumulation point of X iff ∀δ > 0,

((a− δ, a+ δ) \ {a}) ∩X ̸= ∅.

Really what this means is that no matter how close you look (within δ), you will always see stuff besides just
a. Here’s an example:

Example 1. Consider (0, 1]. Is 1 an accumulation point? Yes! Fix any δ > 0. Then there’s definitely other stuff
besides 1 in (1− δ, 1 + δ). Specifically, when you move to the left (1− δ part), there’s still stuff. Same with 0!
So, an accumulation point doesn’t need to live in X , but there must be points super close by.

Ok, correct definition time:

Definition (Limit). Given f : X → R with X ⊆ R, we say

lim
x→a

f(x) = L

iff a is an accumulation point of X and ∀ϵ > 0,∃δ > 0 s.t.

(0 < |x− a| < δ) ∧ (x ∈ X) =⇒ |f(x)− L| < ϵ.

What about this function though?
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Shouldn’t this have two limits as x → 2? Well, no. If we look within ϵ of x = 2, we note that there’s lots
of room between f(x + ϵ) and f(x − ϵ). Intuitively there’s too much room here, which will prevent us from
proving there’s a limit at all. Here’s the point. We will not directly enforce that there must be a unique limit.
However, a consequence of our precise definition is that if a limit does exist, it will be unique (proof of this is
analogous to that of sequences). With this formal definition, let’s look at some examples.

1.2. Examples.

Example 2. Consider

f :R → R
x 7→ x2.

We claim limx→2 f(x) = 4. Let’s do some scratchwork to build up a formal proof.

Scratchwork 1. Since f : R → R, we don’t need to worry about accumulation points (we can plug in
anything!), so we just need to worry about the ϵ− δ stuff. Given ϵ > 0, we need to find an δ > 0 s.t.

0 < |x− 2| < δ =⇒ |x2 − 4| < ϵ.

Ok, let’s find some δ (in terms of ϵ) that works. Well,

|x2 − 4| < ϵ ⇐⇒ |x− 2||x+ 2| < ϵ.



We also know that if x ≈ 2, x + 2 ≈ 4. Hmm. So maybe we’re going to get a factor of 4 somewhere, which
leads us to the initial guess of δ = ϵ/4. Let’s see if this works:

Ok, formal proof time.

Proof. THIS PROOF DOESN’T WORK! Given ϵ > 0. Then ∀x s.t. 0 < |x− 2| < ϵ
4
, we have that

−ϵ/4 < x− 2 < ϵ/4

4− ϵ/4 < x+ 2 < 4 + ϵ/4.

Well since ϵ tiny we know that 4− ϵ/4 > 0, which means x+ 2 > 0. So,

x+ 2 = |x+ 2| < 4 + ϵ/4 < 5.

Thus,

|x2 − 4| = |x− 2||x+ 2|

<
ϵ

4
· 5 =

5

4
ϵ.

Hmm, so this is slightly off. Let’s just change δ to make it work. □

Proof. THIS PROOF ALSO DOESN’T WORK! Given ϵ > 0. Then ∀x s.t. 0 < |x− 2| < ϵ
5
, we have that

−ϵ/5 < x− 2 < ϵ/5

4− ϵ/5 < x+ 2 < 4 + ϵ/5.

Well since ϵ tiny we know that 4− ϵ/5 > 0, which means x+ 2 > 0. So,

x+ 2 = |x+ 2| < 4 + ϵ/5 < 5.

Thus,

|x2 − 4| = |x− 2||x+ 2|

<
ϵ

5
· 5 = ϵ,

and we’re done! □

There’s still a problem here, pointed out by Gabe. We’re assuming here that ϵ is tiny, but that’s not necessarily
the case. What if ϵ = 100. Then 4 + ϵ/5 is definitely not < 5. Notice that when ϵ is huge this should be really
easy to prove, but still we can’t assume it. Let’s do a cheap trick to make this work:

Proof. Given ϵ > 0. ∀x s.t. 0 < |x− 2| < min{1, ϵ/5}, we have

−1 < x− 2 < 1

3 < x+ 2 < 5,

so |x+ 2| < 5, which implies

|x2 − 4| = |x− 2||x+ 2|

<
ϵ

5
· 5 = ϵ.

We can claim |x− 2| < ϵ/5 because it’s smaller than the minimum of ϵ/5 and 1, which means it’s certainly less
that ϵ/5. □

The cheap trick here is this. If you choose a really high tolerance ϵ, we’ll just use 1 instead of ϵ/5.

Let’s do another example:



Example 3. Consider

f :R → R

x 7→

{
|x|
x

x ̸= 0

0 x = 0.

What is limx→0 f(x)? Well, what does this look like. When x > 0 we have f(x) = x/x = 1, and when x < 0
we have f(x) = −x/x = −1. So, this is a piecewise function, which intuitively means the limit shouldn’t
exist. Let’s prove this.

Proof. Suppose limx→0 f(x) = L. Then ∃δ > 0 s.t.

0 < |x− 0| < δ =⇒ |f(x)− L| < 1

10
.

The problem here is that no L is simultaneously close to 1 and −1. Formally, we get that∣∣∣∣f (
−δ

2

)
− L

∣∣∣∣ < 1

10∣∣∣∣f (
δ

2

)
− L

∣∣∣∣ < 1

10
,

which means

| − 1− L| < 1

10

|1− L| < 1

10
.

Let’s use triangle inequality to show this can’t be true. Note | − 1− L| = | − 1(1 + L)| = |1 + L|, and that

2 = |1 + L+ 1− L|
≤ |1 + L|+ |1− L|

<
1

10
+

1

10
=

1

5
,

a contradiction. □
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