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1. PRELIMINARIES

Last time we talked about metric spaces, which serves as a proof of concept that we can deal with sequences
and limits with only a set equipped with a few slight properties. Now we’re going to move on and begin talking
about limits of functions.

1.1. Limits of Functions. Here’s the key idea. What does the following mean?
lim f(z) = 5.
T—2

Intuition 1. Here’s the informal intuition. As you plug in values closer and closer to 2, the function f outputs
values closer and closer to 5. Picture time!

flz) 1 (2,5)

~

Cool! Let’s € the hell out of this:

Definition (Limit- Wrong Definition!).
lim f(x) =5

r—2

iff Ve > 0,30 > O s.t.
lt—2|<d = |f(x) =5 <e

Intuition 2. Here’s the definition in English. Fix a tolerance € > 0. The limit existing means if you fix this
tolerance I can find enough room (specifically § room) such that if x is within 6 of 2 (i.e. |x — 2| < §) then f(z)
is within € of 5 (i.e. | f(z) — 5| < e€).

Here Lexi brought up a great point. What about when f(2) # 5. Here’s the picture:

~
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Intuitively, the limit should still be 5. But does this follow from our formal definition? No! f(2) # 5 will
prevent our definition from working. Let’s fix this by just not allowing z = 2:

Definition (Limit- Also Wrong Definition!). lim,_, f(z) = 5iff Ve > 0,35 > 0 s.t.
O0<|zr—2<d = |f(x)—5|<e
Here the 0 < |z — 2| prevents x = 2. But, this actually doesn’t quite work as well. Consider the following:

fQ—-R

T 5.

(2,9)

~

Ok yes technically since Q dense in R this should actually just look like f(z) = 5 (i.e. although there are gaps
in Q we can’t visibly see them), but this is the general idea. Intuitively, the limit (as x approaches anything!)
should be 5, but our current definition will fail on the technicality that f(z) wouldn’t even be well defined
(what’s f(1/2)? Well, it doesn’t even make sense to ask that question!). Let’s just fix this by adding in we can
only plug in stuff from the domain. Ok, take 3:
Definition (Limit- Also Also Wrong Definition!). Given f : X — R. We say

lim f(x) =L

r—a

iff Ve > 0,30 > O s.t.
O<|zr—a|<dandz e X = |f(z)—L|<e.

Hmm. Here’s a really annoying function.
f:0,1ju{2} - R
T — 5.
Here’s what this looks like:

~

We now can (unfortunately) prove the following:
lim f(x) = .

T—2
Proof. Fix € > 0. Then Vz € [0,1] U {2} s.t. 0 < |z — 2| < 3, we have that | f(z) — 7| < e. Why? Because
there are no such x’s! There is no z that simultaneously is in the domain and also is within 6 = 1/2 of 2, which
means that our claim | f(z) — 7| < € is vacuously true. O



Ugh. Ok, so take 3 didn’t work. The problem here is that 2 is an isolated point. In other words, 30 > 0 s.t.
(2= 0,2+ 96) N Domain(f) = {2}.

Whenever this happens our definition will fail. To fix this we will restrict it so that the a’s we’ll look at must
be accumulation points. First let’s define this:

Definition (Accumulation Point). Given X C R, we say a is an accumulation point of X iftf Vo > 0,
((a—d,a+ ) \{a})NX #£0.

Really what this means is that no matter how close you look (within ¢), you will always see stuff besides just
a. Here’s an example:

Example 1. Consider (0, 1]. Is 1 an accumulation point? Yes! Fix any 6 > 0. Then there’s definitely other stuff
besides 1 in (1 — 4,1 + §). Specifically, when you move to the left (1 — ¢ part), there’s still stuff. Same with 0!
So, an accumulation point doesn’t need to live in X, but there must be points super close by.

Ok, correct definition time:
Definition (Limit). Given f : X — R with X C R, we say
lim f(z) = L

iff a is an accumulation point of X and Ve > 0,30 > 0 s.t.
O<|z—al|<)AN(zeX) = |f(x)—L|<e.

What about this function though?

A

ACO N

N

(2,0)

~

Shouldn’t this have two limits as x — 2? Well, no. If we look within € of z = 2, we note that there’s lots
of room between f(x + €) and f(z — ¢€). Intuitively there’s too much room here, which will prevent us from
proving there’s a limit at all. Here’s the point. We will not directly enforce that there must be a unique limit.
However, a consequence of our precise definition is that if a limit does exist, it will be unique (proof of this is
analogous to that of sequences). With this formal definition, let’s look at some examples.

1.2. Examples.
Example 2. Consider
f R—=R
T 22
We claim lim,_,5 f(z) = 4. Let’s do some scratchwork to build up a formal proof.

Scratchwork 1. Since f : R — R, we don’t need to worry about accumulation points (we can plug in
anything!), so we just need to worry about the ¢ — 0§ stuff. Given ¢ > 0, we need to find an § > 0 s.t.

0<|r—2/<d = |27 —4|<e
Ok, let’s find some ¢ (in terms of €) that works. Well,
|77 — 4] <e = |z -2l +2| <e



We also know that if v =~ 2,x + 2 =~ 4. Hmm. So maybe we’re going to get a factor of 4 somewhere, which
leads us to the initial guess of 0 = €/4. Let’s see if this works:

Ok, formal proof time.
Proof. THIS PROOF DOESN’T WORK! Given € > 0. Then Vz s.t. 0 < |z — 2| < §, we have that
—e/d<r—2<¢e/d
d—ef/d<ax+2<4+e/d
Well since € tiny we know that 4 — €/4 > 0, which means z + 2 > 0. So,
r+2=|r+2|<4+¢€/4<5.

Thus,
2% — 4| = |z — 2||z + 2|
€ 5
< —--5=-—e
17771
Hmm, so this is slightly off. Let’s just change ¢ to make it work. U

Proof. THIS PROOF ALSO DOESN’T WORK! Given ¢ > 0. Then Vz s.t. 0 < [z — 2| < £, we have that
—e/b<r—2<¢/b
4—e/b<x+2<4+¢€/b
Well since € tiny we know that 4 — €/5 > 0, which means z + 2 > 0. So,
r+2=|r+2|<4+¢/5<5.

Thus,
|x2 —4| = |z —2||z + 2|
€
< —-b =k,
5 €
and we’re done! ]

There’s still a problem here, pointed out by Gabe. We’re assuming here that ¢ is tiny, but that’s not necessarily
the case. What if ¢ = 100. Then 4 + €/5 is definitely not < 5. Notice that when € is huge this should be really
easy to prove, but still we can’t assume it. Let’s do a cheap trick to make this work:

Proof. Given e > 0. Vz s.t. 0 < |z — 2| < min{1, ¢/5}, we have

—-1l<x-2<1
3<r+2<5,

so |z + 2| < 5, which implies
|22 — 4| = |z — 2|z + 2|

€

<--5=e

5 €
We can claim |z — 2| < ¢/5 because it’s smaller than the minimum of /5 and 1, which means it’s certainly less
that /5. O

The cheap trick here is this. If you choose a really high tolerance €, we’ll just use 1 instead of €/5.

Let’s do another example:



Example 3. Consider

f R—=>R
l=|
T ” v 70
0 x=0.
What is lim, o f(z)? Well, what does this look like. When x > 0 we have f(z) = z/x = 1, and when z < 0
we have f(z) = —x/x = —1. So, this is a piecewise function, which intuitively means the limit shouldn’t

exist. Let’s prove this.
Proof. Suppose lim,_,o f(z) = L. Then 36 > 0 s.t.
1
O<|z—0]<0 = |f(z)—L| < 0
The problem here is that no L is simultaneously close to 1 and —1. Formally, we get that

(5) <

<_
10

1) 1
\f(ﬁ) ‘L\ <10

which means

1
-1-L| < —
| <10
1
1-L| < —.
| | 10
Let’s use triangle inequality to show this can’t be true. Note | — 1 — L| = | — 1(1 + L)| = |1 + L|, and that

2=1+L+1-1L|
<|1+L|+|1-L]
11 1

< J— -
10 + 10 5’
a contradiction. O
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