REAL ANALYSIS: LECTURE 24

DECEMBER 7TH, 2023

1. Real Analysis- The Finale

Golly to the gee. It's the last class of Real Analysis (don't cry too much or else you can't read this summary). Just a mere couple of months ago we were all so naive; we didn't even know the real numbers are the only complete ordered field up to isomorphism! Look at us now. It only takes us like 10 minutes to prove $f(x)=12$ is continuous! Ok, but honestly we learned a lot this semester. Real numbers: super weird. Infinity: also super weird. Limits: a lot more annoying to define than you might think. ϵ : your new favorite Greek letter. Log trivia: Thursday. Real Analysis: cool, but difficult. Ok, enough of this. Let's do some math.

2. IVT

Last time, we were proving the IVT. Let's try to remember what the IVT is.
Idea 1. Here's Alex's idea. For any $f:[a, b] \rightarrow \mathbb{R}$ continuous, $\forall y$ between $f(a), f(b), \exists c \in[a, b]$ s.t. $f(c)=y$.
This is correct, but IVT is actually stronger. Noah notes it's not that $f:[a, b] \rightarrow \mathbb{R}$. Rather, for every closed interval that lives in the domain, the above property is true. Namely,
Theorem 1 (IVT). Given $f: X \rightarrow \mathbb{R}$ continuous. For any $[a, b] \subseteq X$ and for any y in between $f(a)$ and $f(b)$, $\exists c \in[a, b]$ s.t. $f(c)=y$.

Our goal is to deduce IVT from a weaker theorem, called Bolzano's Theorem. Here's the statement again:
Theorem 2 (Bolzano's Theorem). If $f: X \rightarrow \mathbb{R}$ is continuous on $[a, b] \subseteq X$ and

$$
f(a)<0<f(b)
$$

then there exists $c \in[a, b]$ s.t. $f(c)=0$.

Here's a picture. Call the function above f and note $f(1)<0<f(6)$. Bolzano's Theorem states that there must be some $x \in[1,6]$ s.t. $f(c)=0$. Note there may be many c 's! Ok, let's prove Bolzano's Theorem by beginning with the following lemma:

Lemma 1. If $f:[a, b] \rightarrow \mathbb{R}$ continuous at $c \in[a, b]$ and $f(c)>0$, then $\exists \delta>0$ s.t. $f>0$ on all of $(c-\delta, c+\delta)$.

Idea 2. Here's the intuition. If you zoom in on $x=c$, the stuff nearby must be close to $f(c)>0$, which means the stuff nearby should be >0 as well. More specifically we can look at some ϵ wiggle-room. Let's prove this.
Proof. Since f continuous at $c, \exists \delta>0$ s.t. $|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\frac{f(c)}{2}$ (here $\frac{f(c)}{2}$ is our choice of $\epsilon)$. In particular,

$$
\begin{aligned}
x \in(c-\delta, c+\delta) & \Longrightarrow f(x)-f(c)>-\frac{f(c)}{2} \\
& \Longrightarrow f(x)>\frac{f(c)}{2}>0
\end{aligned}
$$

Thus $f>0$ everywhere on the interval $(c-\delta, c+\delta)$ as claimed.
Remark. Notice Lemma 1 works if you replace all the $f(c)>0$ with $f(c)<0$. Why? Well just take a function g where you want to make the claim with $f(c)<0$. Multiplying everything by -1 gives you a new function $f=-g$, which meets the conditions of Lemma 1 and gives us the desired result.

Let's use Lemma 1 to prove Bolzano's Theorem. Here's the high level idea
Scratchwork 1. Last time we decided if we defined

$$
c:=\sup \underbrace{\{x \in[a, b]: f<0 \text { on all of }[a, x]\}}_{=: \mathcal{A}}
$$

then it makes sense that $f(c)=0$. We can then use trichotomy to prove it. So, what's the problem with $f(c)>0$. Well, on the one hand we can go slightly left of the supremum and find some d s.t. $f(d)<0$ (since $d \in \mathcal{A}$). On the other hand, we can use the above lemma and claim that d is close enough to c that both should be positive; namely $f(d)>0$, which gets us the contradiction. At a high level, this contradiction arises by the fact that there's room to the left (c is not the least upper bound). On the case where $f(c)<0$, we should be able to move over to the right and still find stuff that lives in \mathcal{A}, i.e. c is not an upper bound!
Proof. Define c as above; we proved last class that $c \in \mathbb{R}$. To show $f(c)=0$, it suffices (by trichotomy) to show $f(c) \ngtr 0$ and $f(c) \nless 0$.
Case 1. Suppose, for the sake of contradiction, $f(c)>0$. By Lemma 1, $\exists \delta>0$ s.t. $f(x)>0 \forall x \in(c-\delta, c+\delta)$.
Remark. Here's a subtly flawed approach. Using the above statement we can deduce that

$$
f\left(c-\frac{\delta}{2}\right)>0
$$

which makes it seem like we're done. However, we don't know that $c-\frac{\delta}{2} \in \mathcal{A}$!
Ok, let's keep going. Since $c=\sup \mathcal{A}$, we know $(c-\delta, c]$ contains some $d \in \mathcal{A}$. Notice $c \neq d$, since $f(c)>0$, which means $c \notin \mathcal{A}$ (it doesn't meet the set condition!). But $d \in \mathcal{A}$ means $f(d)<0$, yet on the other hand $d \in(c-\delta, c+\delta)$ implies $f(d)>0$. Contradiction!

Let's move to the other case:
Case 2. Suppose, for the sake of contradiction, $f(c)<0$. By Lemma 1 (actually by our remark afterwards), $\exists \delta>0$ s.t. $f(x)<0 \forall x \in(c-\delta, c+\delta)$. In particular, $f\left(c+\frac{\delta}{2}\right)<0$. But also $\exists d \in(c-\delta, c]$ s.t. $d \in \mathcal{A}$. Thus, $f<0$ on $[a, d]$ and $f<0$ on $\left[d, c+\frac{\delta}{2}\right]$ since $d \in(c-\delta, c+\delta)$. Thus, $c+\frac{\delta}{2} \in \mathcal{A}$, which means c isn't an upper bound on \mathcal{A}.

Together these cases tell us $f(c)=0$, and we're done!
Now let's prove IVT, using Bolzano's Theorem.
Proof. Given $f: X \rightarrow \mathbb{R}$ continuous. Pick $[a, b] \subseteq X$. If $f(a)<y<f(b)$, apply Bolzano to $g(x):=f(x)-y$ (here $g(a)<0<g(b)$ so Bolzano applies), which gives us $c \in[a, b]$ s.t. $g(c)=0 \Longrightarrow f(c)=0+y=y$, as desired. On the other hand, if $f(a)>y>f(b)$, apply Bolzano to $h(x)=-f(x)+y$, which gives us $c \in[a, b]$ s.t. $h(c)=0 \Longrightarrow f(c)=y-h(c)=y$.

3. SERIES

Ok, 15 minutes left. Time to move to a new topic: series. Apparently, the following is true:

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\cdots=1
$$

What does this actually mean? How can you add up an infinite amount of things. Here's what this really means. Let

$$
S_{N}:=\sum_{n=1}^{N} \frac{1}{2^{n}} .
$$

Then $\left(S_{N}\right)$ is a sequence of what we call partial sums, where

$$
\begin{aligned}
S_{1} & =\frac{1}{2} \\
S_{2} & =\frac{1}{2}+\frac{1}{4} \\
S_{3} & =\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \\
\vdots &
\end{aligned}
$$

For any particular choice of N, we know what S_{N} means-it's just a finite sum. The equation

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1
$$

is merely notation that represents

$$
\lim _{N \rightarrow \infty} S_{N}=1
$$

More generally, we write

$$
\sum_{n=1}^{\infty} a_{n}=L
$$

iff the sequences of partial sums

$$
S_{N}:=\sum_{n=1}^{N} a_{n}
$$

converges to L.
Example 1. In Lecture 17, we proved

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

converges by showing the Cauchy Criterion with telescoping series. This series is known as $\zeta(2)$ (Riemann Zeta Function). It turns out this series converges to $\pi^{2} / 6$.
Example 2. Also in Lecture 17, we proved

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

diverges. This is known as the Harmonic Series.
Example 3. Consider

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots
$$

This is known as the Alternating Harmonic Series. Let's show a sketch of why this diverges.

Proof. For each $N \in \mathbb{Z}_{\text {pos }}$, let

$$
S_{N}:=\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n}
$$

be the partial sum of the series. Observe that

$$
S_{2 N}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{2 N-1}-\frac{1}{2 N}\right)
$$

is a sum of positive terms, and in particular the subsequence $S_{2 N}$ is monotonically increasing. If we could show that $\left(S_{2 N}\right)$ is bounded above, the MCT would imply that it converges! Let's see:

$$
S_{2 N}=S_{2 N-1}-\frac{1}{2 N}<S_{2 N-1}
$$

and

$$
S_{2 N-1}=1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\cdots-\left(\frac{1}{2 N-2}-\frac{1}{2 N-1}\right)<1
$$

Thus $S_{2 N}<S_{2 N-1}<1$, which tells us by the MCT that $S_{2 N}$ converges. In particular, there exists some real number L such that $S_{2 N} \rightarrow L$. In particular, $\forall \epsilon>0$ we have

$$
\begin{aligned}
\left|S_{2 N}-L\right| & <\frac{\epsilon}{2} \quad \text { for all large } N \\
\left|S_{2 N-1}-L\right| & =\left|S_{2 N}+\frac{1}{2 N}-L\right| \\
& \leq\left|S_{2 N}-L\right|+\frac{1}{2 N} \\
& \leq \epsilon / 2+\epsilon / 2=\epsilon \quad \text { for all large } N .
\end{aligned}
$$

Thus for any large $k \in \mathbb{Z}_{\text {pos }}$, we see that $\left|S_{k}-L\right|<\epsilon$, whence $\left(S_{N}\right)$ converges. We've proved that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges. (It turns out it converges to $\log 2$, amazingly!)

Congrats! Real Analysis: Complete!

