Williams College
 Department of Mathematics and Statistics
 MATH 350 : REAL ANALYSIS

Problem Set 5 - due Friday, October 13th

INSTRUCTIONS:

This assignment is due by 4 pm on Friday, October 13 th , to be left in the mailbox outside my office door; no late penalty will be assigned, but assignments will not be accepted after 4 pm on Friday.
(0) Read Chapter 7 (pages 20-24).
(1) Prove that for any $x \in \mathbb{R}$ there exists $N \in \mathbb{Z}$ and $\alpha \in[0,1)$ such that $x=N+\alpha$, and that this choice of N and α are uniquely determined by x. (Recall from class that N is called the floor of x, denoted $\lfloor x\rfloor$, and α is called the fractional part of x, denoted $\{\alpha\}$. For example, $\lfloor\pi\rfloor=3$ and $\{\pi\}=0.1415926 \ldots$)
[Note. In class we proved the above statement for $x \geq 1$. You may use that result without reproving it!]
(2) In class, we proved that $\sqrt{2} \in \mathbb{R}$. Earlier, we gave a meta-analytic proof that $\sqrt{2} \notin \mathbb{Q}$. The goal of this problem is to give an analytic proof that $\sqrt{2}$ is irrational due to John Conway (1937-2020). Here and throughout, set $\mathbb{Q}_{\mathrm{pos}}:=\left\{\frac{a}{b}: a, b \in \mathbb{Z}_{\mathrm{pos}}\right\}$; we call the elements of this set the positive rational numbers. Let

$$
\mathcal{A}:=\left\{m \in \mathbb{Z}_{\mathrm{pos}}: m \sqrt{2} \in \mathbb{Z}_{\mathrm{pos}}\right\}
$$

(a) Give the simplest colloquial (i.e. meta-analytic) description of the set \mathcal{A} you can come up with. [Hint: try to use the word 'denominator'.]
(b) Prove that if $a, b \in \mathbb{Z}_{\text {pos }}$, then there exists $c \in \mathbb{Z}_{\text {pos }} \cup\{0\}$ such that $0 \leq c<b$ and

$$
\left\{\frac{a}{b}\right\}=\frac{c}{b}
$$

[In the first line, $\{0\}$ denotes the set with the single element 0 ; in the displayed equation, $\left\{\frac{a}{b}\right\}$ denotes the fractional part of $\frac{a}{b}$.]
(c) Suppose $n \in \mathcal{A}$. Prove that there must exist $k \in \mathbb{Z}_{\text {pos }}$ such that $\sqrt{2}=\frac{k}{n}=\frac{2 n}{k}$.
(d) Keeping the notation as above, prove that $\exists k^{\prime}, n^{\prime} \in \mathbb{Z}$ such that $0<k^{\prime}<k, 0<n^{\prime}<n$, and $\frac{n^{\prime}}{n}=\frac{k^{\prime}}{k}$.
(e) Keeping the notation as above, prove that $n^{\prime} \in \mathcal{A}$.
(f) Prove that $\mathcal{A}=\emptyset$. Why does this imply that $\sqrt{2} \notin \mathbb{Q}_{\text {pos }}$?
(3) (Meta-analytic) Let $\mathbb{Z}[x]$ denote the set of all polynomials with integer coefficients, and consider the set

$$
\mathcal{F}:=\left\{\frac{f(x)}{g(x)}: f, g \in \mathbb{Z}[x] \text { s.t. } g \text { isn't the constant } 0 \text { function }\right\} .
$$

We'll define $h \in \mathcal{F}$ to be positive iff $h(x)>0$ for all large $x \in \mathbb{R}$. Prove that \mathcal{F} is an ordered field, i.e. satisfies (A1)-(A12), but that it fails to satisfy the Archimedean Property. This demonstrates that the Archimedean Property cannot be deduced from (A1)-(A12) alone!
(4) (Meta-analytic) Textbook problem 7.10
(5) (Meta-analytic) Use induction to prove that $2^{2^{n}}-1$ has at least n distinct prime factors.
[Hint. If two integers a and b are both multiples of n, then so is $a-b$.]

