Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Problem Set 10 – due Friday, December 8th

INSTRUCTIONS:

Please submit this assignment by 4pm on Friday; you may leave it in the mailbox outside my office.

- (0) Read Chapters 30–33 (pages 102–111).
- (1) Give an ϵ - δ proof that $\lim_{x \to 4} \frac{1}{\sqrt{x}} = \frac{1}{2}$. (No algebra of limits allowed!)
- (2) Textbook problems 30.5, 30.6, 33.2, 33.3, 33.5.
- (3) Consider the function $f:(0,1) \to \mathbb{R}$ defined by

$$f(x) := \begin{cases} 0 & \text{if } x \notin \mathbb{Q} \\ \frac{1}{n} & \text{if } x = \frac{a}{n} \text{ in reduced terms.} \end{cases}$$

Does $\lim_{x \to 1/3} f(x)$ exist? Either way, justify your answer with a proof.

- (4) Give concrete examples to show that the following definitions of $\lim_{x \to a} f(x) = L$ are incorrect.
 - (a) For all $\delta > 0$, exists $\epsilon > 0$ such that $|f(x) L| < \epsilon$ whenever $0 < |x a| < \delta$.
 - (b) For all $\epsilon > 0$, exists $\delta > 0$ such that if $|f(x) L| < \epsilon$ then $0 < |x a| < \delta$.
- (5) Suppose $f:[0,1] \to \mathbb{R}$ is monotone increasing, i.e. that $f(x) \le f(y)$ whenever $x \le y$.
 - (a) Show that for any $a \in (0,1)$, $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ both exist.
 - (b) Let \mathcal{D} denote the set of all points in [0, 1] at which f is discontinuous. Prove that \mathcal{D} is countable.
- (6) Let $0 \le \alpha < 1$, and let $f : \mathbb{R} \to \mathbb{R}$ be a function that satisfies $|f(x) f(y)| \le \alpha |x y|$ for all $x, y \in \mathbb{R}$. Pick $a_1 \in \mathbb{R}$, and set $a_{n+1} := f(a_n)$ for all $n \in \mathbb{Z}_{pos}$. Prove that (a_n) converges. [You may freely use the geometric series formula without proving it.]
- (7) The goal of this problem is to explore how continuous functions affect topological properties of sets. (I won't define precisely what I mean by *topological*, but highly recommend taking a course on topology.) Recall that if \mathcal{A} is a subset of the domain of a function f, then $f(\mathcal{A}) := \{f(x) : x \in \mathcal{A}\}$.
 - (a) If f is continuous on a bounded set \mathcal{B} , must $f(\mathcal{B})$ be bounded? Prove or give a counterexample.
 - (b) If f is continuous on a closed interval C, must f(C) be a closed interval? Prove or give a counterexample.
 - (c) If f is continuous on an open interval \mathcal{O} , must $f(\mathcal{O})$ be an open interval? Prove or give a counterexample.