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4.2 Prove parts (i) and (iii) of Theorem 4.5:
(i) Let ϵ > 0. Then |x| < ϵ if and only if −ϵ < x < ϵ and |x| ≤ ϵ if and only if −ϵ ≤ x ≤ ϵ.

(iii) |xy| = |x||y| for all x, y ∈ R.

(i) ( =⇒ ) Suppose |x| < ϵ. By Theorem 4.5 (ii), |x| ≥ x, so ϵ > |x| ≥ x takes care of
ϵ > x. Thus, it suffices to show x > −ϵ, which is equivalent to showing x + ϵ > 0. Either
x > 0, x = 0, x < 0. If x > 0 by closure of positives x+ ϵ > 0. If x = 0 then x+ ϵ = ϵ > 0.
If x < 0 then notice |x| = −x, which tells us |x| = −x < ϵ. Since −1 < 0 (1 > 0 so −1 < 0
by trichotomy), by theorem 4.2 part v we know

−x < ϵ

(−1)(−x) > (−1)ϵ

x > −ϵ,

where (−1)(−x) = x is due to a proposition we proved last problem set along with uniqueness
of identity.

( ⇐= ) Suppose −ϵ < x < ϵ. Either x ≥ 0 or x < 0. If x ≥ 0 then |x| = x, which by our
supposition tells us |x| < ϵ. If x < 0 (so |x| = −x) then −ϵ < x rearranges to |x| = −x < ϵ.

We can use our work above to simplify the proof that |x| ≤ ϵ ⇐⇒ −ϵ ≤ x ≤ ϵ.
( =⇒ ) If |x| < ϵ then our work above implies −ϵ ≤ x ≤ ϵ. If |x| = ϵ then either x = |x| = ϵ
or −x = |x| = ϵ. This implies x = ±ϵ, so in particular, −ϵ ≤ x ≤ ϵ.
( ⇐= ) If −ϵ < x < ϵ, our work above implies |x| ≤ ϵ. If x = ±ϵ, then |x| = x (if x > 0) or
−x (if x < 0); either way, |x| ≤ ϵ in this case.

(iii) Suppose at least one of x, y are 0. WLOG let x = 0. Then

|xy| = |0 · y|
= |0|
= 0

= 0 · |y|
= |x| · |y|.

Suppose x, y ∈ P, i.e. both are positive. Then xy ∈ P by closure of positives. Then,

|xy| = xy = |x||y|.
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Suppose one of x, y are negative. WLOG let x < 0, i.e. |x| = −x and |y| = y. Also notice
that

(−x)y = (−1 · x)y = −1(xy) = −xy

by what we proved in pset 2. Further −xy is positive by closure. Thus,

|xy| = | − 1(−x)y|
= | − 1(−xy)|
= −xy

= |x||y|.

Finally, suppose both x and y are negative, i.e. |x| = −x, |y| = −y. Further, by closure of
positives (−x)(−y) is positive. Thus,

|xy| = |(−1)(−x) · (−1)(−y)|
= |(−1)(−1)(−x)(−y)||
= | − (−1)(−x)(−y)||
= |(−x)(−y)||
= (−x)(−y)

= |x||y|.

Since these are all the possible cases, we’re done.

4.3 Given x, y ∈ R such that x ≤ y and y ≤ x. Prove that x = y.

If x ≤ y, then y − x ∈ P ∪ {0}. If x ≥ y, then x− y ∈ P ∪ {0}. Further, 3.8 and 3.3 imply

−(y − x) = (−1)(y − x) = (−1)y + (−1)(−x) = −y +−(−x) = −y + x = x− y.

Putting all the above together, we conclude that if x ≥ y and x ≤ y then

y − x ∈ P ∪ {0} and − (y − x) ∈ P ∪ {0}.

If x ̸= y, the first condition guarantees y − x ∈ P, while the second condition guarantees
−(y − x) = x− y ∈ P, contradicting trichotomy. Thus x ̸= y cannot hold, i.e., x = y.
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4.6 Prove that x2 > 0 for all x ∈ R \ {0}.

We first prove:

Lemma 1. For any x ∈ R we have (−x)(−x) = x2.

From this the claim follows almost immediately: if x ̸= 0, trichotomy implies either x ∈ P
or −x ∈ P, and in either case the closure of P under multiplication yields x2 ∈ P. It remains
only to prove the Lemma:

Proof of Lemma. We have

x2 = x · x = x ·
(
− (−x)

)
by 3.3

= x · (−1) · (−x) by 3.8

= (−1) · x · (−x) by commutativity and associativity

= (−x)(−x) by 3.8.

(2) (Meta-analytic) Recall that C := {a + bi : a, b ∈ R}, the collection of complex numbers. Prove that C
isn’t an ordered field, i.e. that it doesn’t satisfy (A1)-(A12).

I claim that C fails to satisfy (A12). Indeed, suppose there existed P ⊆ C satisfying (A12).
We’ll prove that i ̸∈ P, −i ̸∈ P, and i ̸= 0, violating trichotomy. First observe that 1 ∈ P,
since we proved in class that the multiplicative identity of any set satisfying (A1)–(A12)
must be positive. It follows that i ̸∈ P, since otherwise −1 = i · i would live in P, which we
know isn’t the case. But the same argument shows that −i, the additive inverse of i, can’t
live in P either! And since 0 ∈ C and the additive identity is unique, we see that i ̸= 0. Thus
trichotomy cannot be satisfied, so no set P ⊆ C satisfying (A12) can exist.

(3) (Meta-analytic) Let F7 := {0, 1, 2, 3, 4, 5, 6}, endowed with two operations + (mod 7) and · (mod 7).
Prove that F7 isn’t an ordered field.

Notice x+0 = x ∀x ∈ F7. Thus, 0 is the additive identity. Since 6+1 = 0, 6 and 1 are additive
inverses. Suppose, for the sake of contradiction, there’s a P ⊆ F7 satisfying (A12). Then by
trichotomy exactly one of 1 ∈ P or 6 ∈ P. If 1 ∈ P then by closure 1+1+1+1+1+1 = 6 ∈ P,
and if 6 ∈ P then by closure 6 + 6 + 6 + 6 + 6 + 6 = 1 ∈ P, which is a contradiction.

(4) Prove that 1 + 1 ̸= 0. Must this still be true if we only required that R satisfy (A1)–(A11)? Justify your
answer.

We proved in class that 1 > 0, so Theorem 4.2 implies

2 = 1 + 1 > 1.

Since the right hand side is positive, we deduce 2 > 0 (again by Theorem 4.2), and trichotomy
immediately implies 1+1 ̸= 0. If we remove (A12), however, the situation changes drastically.
Indeed, consider the set {0, 1} with respect to the operations + and · defined by the tables

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

It is straightforward to verify that this satisfies all of (A1)–(A11), and it’s evident from the
addition table that 1 + 1 = 0.
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(5) There are real numbers between real numbers!

(i) Prove that x−1 > 0 for all positive x.

If x > 0, then x ̸= 0 by trichotomy, whence (A10) implies the existence of x−1 ∈ R. We now
employ trichotomy to prove the claim:

� x−1 ̸= 0. Otherwise, we’d have 1 = x−1 · x = 0 · x = 0, contradicting (A9).

� x−1 ̸< 0. Otherwise, Theorem 4.2 would imply 1 = x−1 · x < 0 · x = 0, contradicting
trichotomy (since we proved that 1 > 0).

Trichotomy yields that x−1 > 0, as claimed.

(ii) Suppose a < b. Prove ∃x ∈ R such that a < x < b.

The idea is simple enough: the average of a and b is a real number that’s strictly between
them. Proving this rigorously is a bit more challenging, however. In particular,

every time there’s a multiplication in an inequality, you have to make sure
you’ve already proved that the thing you’re multiplying by is positive!

Proposition 1. a < (a+ b) · 2−1 < b.

Proof. Since a < b, Theorem 4.2 implies that a+ b < b+ b = (1 + 1)b = 2b. By the lemma
below, we know 2−1 > 0, so (again by Theorem 4.2)

(a+ b) · 2−1 < b.

Similarly, we have a+ b > a+ a = (1 + 1)a = 2a, whence

(a+ b) · 2−1 > a.

Lemma 2. 0 < 2−1 < 1.

Proof. We proved in class that 1 > 0. Theorem 4.2 implies

(∗) 2 = 1 + 1 > 1.

Since the right hand side is positive, we deduce 2 > 0 (again by Theorem 4.2), whence
2−1 > 0 by the previous part of this problem.

To prove the other half of the claim, we multiply both sides of (∗) by 2−1. Because we’ve
already proved 2−1 is positive, Theorem 4.2 implies that 1 > 2−1.

(6) Suppose x, y ∈ R and satisfy the inequality x ≤ y + ϵ for every real number ϵ > 0. Prove that x ≤ y.

Suppose x > y. Then x − y > 0, so problem (4) would imply the existence of ϵ ∈ R such
that 0 < ϵ < x− y. But then we would have x > y + ϵ, contradicting the hypothesis.
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