Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Solution Set 3

4.2 Prove parts (i) and (iii) of Theorem 4.5:

(i) Let $\epsilon > 0$. Then $|x| < \epsilon$ if and only if $-\epsilon < x < \epsilon$ and $|x| \le \epsilon$ if and only if $-\epsilon \le x \le \epsilon$.

(iii) |xy| = |x||y| for all $x, y \in \mathbb{R}$.

(i) (\implies) Suppose $|x| < \epsilon$. By Theorem 4.5 (ii), $|x| \ge x$, so $\epsilon > |x| \ge x$ takes care of $\epsilon > x$. Thus, it suffices to show $x > -\epsilon$, which is equivalent to showing $x + \epsilon > 0$. Either x > 0, x = 0, x < 0. If x > 0 by closure of positives $x + \epsilon > 0$. If x = 0 then $x + \epsilon = \epsilon > 0$. If x < 0 then notice |x| = -x, which tells us $|x| = -x < \epsilon$. Since -1 < 0 (1 > 0 so -1 < 0 by trichotomy), by theorem 4.2 part v we know

where (-1)(-x) = x is due to a proposition we proved last problem set along with uniqueness of identity.

 (\Leftarrow) Suppose $-\epsilon < x < \epsilon$. Either $x \ge 0$ or x < 0. If $x \ge 0$ then |x| = x, which by our supposition tells us $|x| < \epsilon$. If x < 0 (so |x| = -x) then $-\epsilon < x$ rearranges to $|x| = -x < \epsilon$.

We can use our work above to simplify the proof that $|x| \le \epsilon \iff -\epsilon \le x \le \epsilon$. (\implies) If $|x| < \epsilon$ then our work above implies $-\epsilon \le x \le \epsilon$. If $|x| = \epsilon$ then either $x = |x| = \epsilon$ or $-x = |x| = \epsilon$. This implies $x = \pm \epsilon$, so in particular, $-\epsilon \le x \le \epsilon$. (\iff) If $-\epsilon < x < \epsilon$, our work above implies $|x| \le \epsilon$. If $x = \pm \epsilon$, then |x| = x (if x > 0) or -x (if x < 0); either way, $|x| \le \epsilon$ in this case.

(iii) Suppose at least one of x, y are 0. WLOG let x = 0. Then

$$\begin{aligned} xy| &= |0 \cdot y| \\ &= |0| \\ &= 0 \\ &= 0 \cdot |y| \\ &= |x| \cdot |y| \end{aligned}$$

Suppose $x, y \in \mathbb{P}$, i.e. both are positive. Then $xy \in \mathbb{P}$ by closure of positives. Then,

$$|xy| = xy = |x||y|.$$

continued on next page...

Suppose one of x, y are negative. WLOG let x < 0, i.e. |x| = -x and |y| = y. Also notice that

$$(-x)y = (-1 \cdot x)y = -1(xy) = -xy$$

by what we proved in pset 2. Further -xy is positive by closure. Thus,

|xy| = |-1(-x)y| = |-1(-xy)| = -xy = |x||y|.

Finally, suppose both x and y are negative, i.e. |x| = -x, |y| = -y. Further, by closure of positives (-x)(-y) is positive. Thus,

$$|xy| = |(-1)(-x) \cdot (-1)(-y)|$$

= |(-1)(-1)(-x)(-y)||
= |-(-1)(-x)(-y)||
= |(-x)(-y)||
= (-x)(-y)
= |x||y|.

Since these are all the possible cases, we're done.

4.3 Given $x, y \in \mathbb{R}$ such that $x \leq y$ and $y \leq x$. Prove that x = y.

If $x \leq y$, then $y - x \in \mathbb{P} \cup \{0\}$. If $x \geq y$, then $x - y \in \mathbb{P} \cup \{0\}$. Further, **3.8** and **3.3** imply -(y - x) = (-1)(y - x) = (-1)y + (-1)(-x) = -y + -(-x) = -y + x = x - y. Putting all the above together, we conclude that if $x \geq y$ and $x \leq y$ then $y - x \in \mathbb{P} \cup \{0\}$ and $-(y - x) \in \mathbb{P} \cup \{0\}$.

If $x \neq y$, the first condition guarantees $y - x \in \mathcal{P}$, while the second condition guarantees $-(y - x) = x - y \in \mathbb{P}$, contradicting trichotomy. Thus $x \neq y$ cannot hold, i.e., x = y. \Box

4.6 Prove that $x^2 > 0$ for all $x \in \mathbb{R} \setminus \{0\}$.

We first prove:

Lemma 1. For any $x \in \mathbb{R}$ we have $(-x)(-x) = x^2$.

From this the claim follows almost immediately: if $x \neq 0$, trichotomy implies either $x \in \mathbb{P}$ or $-x \in \mathbb{P}$, and in either case the closure of \mathbb{P} under multiplication yields $x^2 \in \mathbb{P}$. It remains only to prove the Lemma:

Proof of Lemma. We have

$$x^{2} = x \cdot x = x \cdot \left(-(-x)\right) \quad \text{by 3.3}$$

= $x \cdot (-1) \cdot (-x) \quad \text{by 3.8}$
= $(-1) \cdot x \cdot (-x) \quad \text{by commutativity and associativity}$
= $(-x)(-x) \quad \text{by 3.8}.$

(2) (Meta-analytic) Recall that $\mathbb{C} := \{a + bi : a, b \in \mathbb{R}\}$, the collection of complex numbers. Prove that \mathbb{C} isn't an ordered field, i.e. that it doesn't satisfy (A1)-(A12).

I claim that \mathbb{C} fails to satisfy (A12). Indeed, suppose there existed $\mathbb{P} \subseteq \mathbb{C}$ satisfying (A12). We'll prove that $i \notin \mathbb{P}$, $-i \notin \mathbb{P}$, and $i \neq 0$, violating trichotomy. First observe that $1 \in \mathbb{P}$, since we proved in class that the multiplicative identity of *any* set satisfying (A1)–(A12) must be positive. It follows that $i \notin \mathbb{P}$, since otherwise $-1 = i \cdot i$ would live in \mathbb{P} , which we know isn't the case. But the same argument shows that -i, the additive inverse of i, can't live in \mathbb{P} either! And since $0 \in \mathbb{C}$ and the additive identity is unique, we see that $i \neq 0$. Thus trichotomy cannot be satisfied, so no set $\mathbb{P} \subseteq \mathbb{C}$ satisfying (A12) can exist.

(3) (Meta-analytic) Let $\mathbb{F}_7 := \{0, 1, 2, 3, 4, 5, 6\}$, endowed with two operations $+ \pmod{7}$ and $\cdot \pmod{7}$. Prove that \mathbb{F}_7 isn't an ordered field.

Notice $x+0 = x \ \forall x \in \mathbb{F}_7$. Thus, 0 is the additive identity. Since 6+1 = 0, 6 and 1 are additive inverses. Suppose, for the sake of contradiction, there's a $\mathbb{P} \subseteq \mathbb{F}_7$ satisfying (A12). Then by trichotomy exactly one of $1 \in \mathbb{P}$ or $6 \in \mathbb{P}$. If $1 \in \mathbb{P}$ then by closure $1+1+1+1+1+1=6 \in \mathbb{P}$, and if $6 \in \mathbb{P}$ then by closure $6+6+6+6+6+6=1 \in \mathbb{P}$, which is a contradiction.

(4) Prove that $1 + 1 \neq 0$. Must this still be true if we only required that \mathbb{R} satisfy (A1)–(A11)? Justify your answer.

We proved in class that 1 > 0, so Theorem 4.2 implies

2 = 1 + 1 > 1.

Since the right hand side is positive, we deduce 2 > 0 (again by Theorem 4.2), and trichotomy immediately implies $1+1 \neq 0$. If we remove (A12), however, the situation changes drastically. Indeed, consider the set $\{0, 1\}$ with respect to the operations + and \cdot defined by the tables

	0			0	
	0		0	$\begin{array}{c} 0\\ 0 \end{array}$	0
1	1	0	1	0	1

It is straightforward to verify that this satisfies all of (A1)–(A11), and it's evident from the addition table that 1 + 1 = 0.

- (5) There are real numbers between real numbers!
 - (i) Prove that $x^{-1} > 0$ for all positive x.

If x > 0, then $x \neq 0$ by trichotomy, whence (A10) implies the existence of $x^{-1} \in \mathbb{R}$. We now employ trichotomy to prove the claim:

- $x^{-1} \neq 0$. Otherwise, we'd have $1 = x^{-1} \cdot x = 0 \cdot x = 0$, contradicting (A9).
- $x^{-1} \neq 0$. Otherwise, Theorem 4.2 would imply $1 = x^{-1} \cdot x < 0 \cdot x = 0$, contradicting trichotomy (since we proved that 1 > 0).

Trichotomy yields that $x^{-1} > 0$, as claimed.

(ii) Suppose a < b. Prove $\exists x \in \mathbb{R}$ such that a < x < b.

The idea is simple enough: the average of a and b is a real number that's strictly between them. Proving this rigorously is a bit more challenging, however. In particular,

every time there's a multiplication in an inequality, you have to make sure you've already proved that the thing you're multiplying by is positive!

Proposition 1. $a < (a+b) \cdot 2^{-1} < b$.

Proof. Since a < b, Theorem 4.2 implies that a + b < b + b = (1 + 1)b = 2b. By the lemma below, we know $2^{-1} > 0$, so (again by Theorem 4.2)

 $(a+b) \cdot 2^{-1} < b.$

Similarly, we have a + b > a + a = (1 + 1)a = 2a, whence

$$(a+b) \cdot 2^{-1} > a.$$

Lemma 2. $0 < 2^{-1} < 1$.

Proof. We proved in class that 1 > 0. Theorem 4.2 implies

$$(*) 2 = 1 + 1 > 1.$$

Since the right hand side is positive, we deduce 2 > 0 (again by Theorem 4.2), whence $2^{-1} > 0$ by the previous part of this problem.

To prove the other half of the claim, we multiply both sides of (*) by 2^{-1} . Because we've already proved 2^{-1} is positive, Theorem 4.2 implies that $1 > 2^{-1}$.

(6) Suppose $x, y \in \mathbb{R}$ and satisfy the inequality $x \leq y + \epsilon$ for every real number $\epsilon > 0$. Prove that $x \leq y$.

Suppose x > y. Then x - y > 0, so problem (4) would imply the existence of $\epsilon \in \mathbb{R}$ such that $0 < \epsilon < x - y$. But then we would have $x > y + \epsilon$, contradicting the hypothesis.