Williams College

Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Solution Set 3

4.2 Prove parts (i) and (iii) of Theorem 4.5:
(i) Let $\epsilon>0$. Then $|x|<\epsilon$ if and only if $-\epsilon<x<\epsilon$ and $|x| \leq \epsilon$ if and only if $-\epsilon \leq x \leq \epsilon$.
(iii) $|x y|=|x||y|$ for all $x, y \in \mathbb{R}$.
(i) (\Longrightarrow) Suppose $|x|<\epsilon$. By Theorem 4.5 (ii), $|x| \geq x$, so $\epsilon>|x| \geq x$ takes care of $\epsilon>x$. Thus, it suffices to show $x>-\epsilon$, which is equivalent to showing $x+\epsilon>0$. Either $x>0, x=0, x<0$. If $x>0$ by closure of positives $x+\epsilon>0$. If $x=0$ then $x+\epsilon=\epsilon>0$. If $x<0$ then notice $|x|=-x$, which tells us $|x|=-x<\epsilon$. Since $-1<0(1>0$ so $-1<0$ by trichotomy), by theorem 4.2 part v we know

$$
\begin{aligned}
-x & <\epsilon \\
(-1)(-x) & >(-1) \epsilon \\
x & >-\epsilon,
\end{aligned}
$$

where $(-1)(-x)=x$ is due to a proposition we proved last problem set along with uniqueness of identity.
(\Longleftarrow) Suppose $-\epsilon<x<\epsilon$. Either $x \geq 0$ or $x<0$. If $x \geq 0$ then $|x|=x$, which by our supposition tells us $|x|<\epsilon$. If $x<0$ (so $|x|=-x$) then $-\epsilon<x$ rearranges to $|x|=-x<\epsilon$.

We can use our work above to simplify the proof that $|x| \leq \epsilon \Longleftrightarrow-\epsilon \leq x \leq \epsilon$.
(\Longrightarrow) If $|x|<\epsilon$ then our work above implies $-\epsilon \leq x \leq \epsilon$. If $|x|=\epsilon$ then either $x=|x|=\epsilon$ or $-x=|x|=\epsilon$. This implies $x= \pm \epsilon$, so in particular, $-\epsilon \leq x \leq \epsilon$.
(\Longleftarrow) If $-\epsilon<x<\epsilon$, our work above implies $|x| \leq \epsilon$. If $x= \pm \epsilon$, then $|x|=x$ (if $x>0$) or $-x$ (if $x<0$); either way, $|x| \leq \epsilon$ in this case.
(iii) Suppose at least one of x, y are 0 . WLOG let $x=0$. Then

$$
\begin{aligned}
|x y| & =|0 \cdot y| \\
& =|0| \\
& =0 \\
& =0 \cdot|y| \\
& =|x| \cdot|y| .
\end{aligned}
$$

Suppose $x, y \in \mathbb{P}$, i.e. both are positive. Then $x y \in \mathbb{P}$ by closure of positives. Then,

$$
|x y|=x y=|x||y| .
$$

Suppose one of x, y are negative. WLOG let $x<0$, i.e. $|x|=-x$ and $|y|=y$. Also notice that

$$
(-x) y=(-1 \cdot x) y=-1(x y)=-x y
$$

by what we proved in pset 2. Further $-x y$ is positive by closure. Thus,

$$
\begin{aligned}
|x y| & =|-1(-x) y| \\
& =|-1(-x y)| \\
& =-x y \\
& =|x||y| .
\end{aligned}
$$

Finally, suppose both x and y are negative, i.e. $|x|=-x,|y|=-y$. Further, by closure of positives $(-x)(-y)$ is positive. Thus,

$$
\begin{aligned}
|x y| & =|(-1)(-x) \cdot(-1)(-y)| \\
& =|(-1)(-1)(-x)(-y)| \mid \\
& =|-(-1)(-x)(-y)| \mid \\
& =|(-x)(-y)| \mid \\
& =(-x)(-y) \\
& =|x||y| .
\end{aligned}
$$

Since these are all the possible cases, we're done.
4.3 Given $x, y \in \mathbb{R}$ such that $x \leq y$ and $y \leq x$. Prove that $x=y$.

If $x \leq y$, then $y-x \in \mathbb{P} \cup\{0\}$. If $x \geq y$, then $x-y \in \mathbb{P} \cup\{0\}$. Further, 3.8 and $\mathbf{3 . 3}$ imply

$$
-(y-x)=(-1)(y-x)=(-1) y+(-1)(-x)=-y+-(-x)=-y+x=x-y
$$

Putting all the above together, we conclude that if $x \geq y$ and $x \leq y$ then

$$
y-x \in \mathbb{P} \cup\{0\} \quad \text { and } \quad-(y-x) \in \mathbb{P} \cup\{0\} .
$$

If $x \neq y$, the first condition guarantees $y-x \in \mathcal{P}$, while the second condition guarantees $-(y-x)=x-y \in \mathbb{P}$, contradicting trichotomy. Thus $x \neq y$ cannot hold, i.e., $x=y$.
4.6 Prove that $x^{2}>0$ for all $x \in \mathbb{R} \backslash\{0\}$.

We first prove:
Lemma 1. For any $x \in \mathbb{R}$ we have $(-x)(-x)=x^{2}$.
From this the claim follows almost immediately: if $x \neq 0$, trichotomy implies either $x \in \mathbb{P}$ or $-x \in \mathbb{P}$, and in either case the closure of \mathbb{P} under multiplication yields $x^{2} \in \mathbb{P}$. It remains only to prove the Lemma:

Proof of Lemma. We have

$$
\begin{array}{rlrl}
x^{2}=x \cdot x & =x \cdot(-(-x)) & & \text { by } \mathbf{3 . 3} \\
& =x \cdot(-1) \cdot(-x) & & \text { by } 3.8 \\
& =(-1) \cdot x \cdot(-x) & & \text { by commutativity and associativity } \\
& =(-x)(-x) & \text { by } 3.8
\end{array}
$$

(2) (Meta-analytic) Recall that $\mathbb{C}:=\{a+b i: a, b \in \mathbb{R}\}$, the collection of complex numbers. Prove that \mathbb{C} isn't an ordered field, i.e. that it doesn't satisfy (A1)-(A12).

I claim that \mathbb{C} fails to satisfy (A12). Indeed, suppose there existed $\mathbb{P} \subseteq \mathbb{C}$ satisfying (A12). We'll prove that $i \notin \mathbb{P},-i \notin \mathbb{P}$, and $i \neq 0$, violating trichotomy. First observe that $1 \in \mathbb{P}$, since we proved in class that the multiplicative identity of any set satisfying (A1)-(A12) must be positive. It follows that $i \notin \mathbb{P}$, since otherwise $-1=i \cdot i$ would live in \mathbb{P}, which we know isn't the case. But the same argument shows that $-i$, the additive inverse of i, can't live in \mathbb{P} either! And since $0 \in \mathbb{C}$ and the additive identity is unique, we see that $i \neq 0$. Thus trichotomy cannot be satisfied, so no set $\mathbb{P} \subseteq \mathbb{C}$ satisfying (A12) can exist.
(3) (Meta-analytic) Let $\mathbb{F}_{7}:=\{0,1,2,3,4,5,6\}$, endowed with two operations $+(\bmod 7)$ and $\cdot(\bmod 7)$. Prove that \mathbb{F}_{7} isn't an ordered field.
Notice $x+0=x \forall x \in \mathbb{F}_{7}$. Thus, 0 is the additive identity. Since $6+1=0,6$ and 1 are additive inverses. Suppose, for the sake of contradiction, there's a $\mathbb{P} \subseteq \mathbb{F}_{7}$ satisfying (A12). Then by trichotomy exactly one of $1 \in \mathbb{P}$ or $6 \in \mathbb{P}$. If $1 \in \mathbb{P}$ then by closure $1+1+1+1+1+1=6 \in \mathbb{P}$, and if $6 \in \mathbb{P}$ then by closure $6+6+6+6+6+6=1 \in \mathbb{P}$, which is a contradiction.
(4) Prove that $1+1 \neq 0$. Must this still be true if we only required that \mathbb{R} satisfy (A1)-(A11)? Justify your answer.
We proved in class that $1>0$, so Theorem 4.2 implies

$$
2=1+1>1
$$

Since the right hand side is positive, we deduce $2>0$ (again by Theorem 4.2), and trichotomy immediately implies $1+1 \neq 0$. If we remove (A12), however, the situation changes drastically. Indeed, consider the set $\{0,1\}$ with respect to the operations + and \cdot defined by the tables

It is straightforward to verify that this satisfies all of (A1)-(A11), and it's evident from the addition table that $1+1=0$.
(5) There are real numbers between real numbers!
(i) Prove that $x^{-1}>0$ for all positive x.

If $x>0$, then $x \neq 0$ by trichotomy, whence (A10) implies the existence of $x^{-1} \in \mathbb{R}$. We now employ trichotomy to prove the claim:

- $x^{-1} \neq 0$. Otherwise, we'd have $1=x^{-1} \cdot x=0 \cdot x=0$, contradicting (A9).
- $x^{-1} \nless 0$. Otherwise, Theorem 4.2 would imply $1=x^{-1} \cdot x<0 \cdot x=0$, contradicting trichotomy (since we proved that $1>0$).

Trichotomy yields that $x^{-1}>0$, as claimed.
(ii) Suppose $a<b$. Prove $\exists x \in \mathbb{R}$ such that $a<x<b$.

The idea is simple enough: the average of a and b is a real number that's strictly between them. Proving this rigorously is a bit more challenging, however. In particular,
every time there's a multiplication in an inequality, you have to make sure you've already proved that the thing you're multiplying by is positive!
Proposition 1. $a<(a+b) \cdot 2^{-1}<b$.
Proof. Since $a<b$, Theorem 4.2 implies that $a+b<b+b=(1+1) b=2 b$. By the lemma below, we know $2^{-1}>0$, so (again by Theorem 4.2)

$$
(a+b) \cdot 2^{-1}<b
$$

Similarly, we have $a+b>a+a=(1+1) a=2 a$, whence

$$
(a+b) \cdot 2^{-1}>a
$$

Lemma 2. $0<2^{-1}<1$.
Proof. We proved in class that $1>0$. Theorem 4.2 implies
(*)

$$
2=1+1>1 .
$$

Since the right hand side is positive, we deduce $2>0$ (again by Theorem 4.2), whence $2^{-1}>0$ by the previous part of this problem.

To prove the other half of the claim, we multiply both sides of $(*)$ by 2^{-1}. Because we've already proved 2^{-1} is positive, Theorem 4.2 implies that $1>2^{-1}$.
(6) Suppose $x, y \in \mathbb{R}$ and satisfy the inequality $x \leq y+\epsilon$ for every real number $\epsilon>0$. Prove that $x \leq y$.

Suppose $x>y$. Then $x-y>0$, so problem (4) would imply the existence of $\epsilon \in \mathbb{R}$ such that $0<\epsilon<x-y$. But then we would have $x>y+\epsilon$, contradicting the hypothesis.

