Williams College

Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Solution Set 4

5.1 Let X be a set of real numbers with least upper bound a. Prove that if $\epsilon>0$, there exists $x \in X$ such that $a-\epsilon<x \leq a$.

By Problem Set 3 (5), we know there exists a real number $x \in(a-\epsilon, a)$. Notice this isn't enough, as we must find some $y \in X \cap(a-\epsilon, a]$. Since a is the least upper bound of X, x isn't an upper bound on X, whence $\exists y \in X$ such that $y>x$. On the other hand, $y \leq a$, since a is an upper bound of X. We conclude that $a-\epsilon<x<y \leq a$, so we've found an element $y \in X \cap(a-\epsilon, a]$.
5.2 Prove that the greatest lower bound of a set of real numbers is unique.

Suppose both α and α^{\prime} are greatest lower bounds of $A \subseteq \mathbb{R}$. Then both α and α^{\prime} are lower bounds of A. Since α is a greatest lower bound, $\alpha \geq \alpha^{\prime}$. But α^{\prime} is also a greatest lower bound, so $\alpha^{\prime} \geq \alpha$. By problem 4.3 from the last problem set, $\alpha=\alpha^{\prime}$.
5.3 Give another proof of Theorem 5.4 (a nonempty set of real numbers that's bounded below has a greatest lower bound) by considering the least upper bound of the set $-X:=\{-x: x \in X\}$.

Suppose $X \subseteq \mathbb{R}$ is nonempty and bounded below, say, by $a \in \mathbb{R}$. This means, by definition, that $a \leq x$ for every $x \in X$. But then $-a \geq-x$ for all $x \in X$, whence $-a$ is an upper bound on $-X$. Since $-X$ is clearly nonempty, the completeness axiom (A13) implies sup $-X$ exists; in other words, $\exists \alpha \in \mathbb{R}$ such that
(i) $\alpha \geq-x$ for all $x \in X$, and
(ii) $\alpha \leq \beta$ for any upper bound β of $-X$.

I claim $-\alpha=\inf X$. To see this, first observe that (i) implies $-\alpha \leq x$ for all $x \in X$, whence

$$
-\alpha \text { is a lower bound on } X .
$$

Next, given any lower bound y of X we have $-y$ is an upper bound of $-X$ (as proved above), so (ii) implies $\alpha \leq-y$; it follows that $-\alpha \geq y$. In other words,

$$
-\alpha \text { is at least as large as any lower bound on } X .
$$

The two boxed statements imply that $-\alpha$ is the greatest lower bound of X.
5.5 Let X and Y be nonempty subsets of real numbers such that $X \subset Y$ and Y is bounded above. Prove that $\sup X \leq \sup Y$.
The fact that $X \subseteq Y$ has two immediate consequences:

- any upper bound of Y is automatically an upper bound of X, and
- $X \neq \emptyset$ implies $Y \neq \emptyset$.

Thus both X and Y are non-empty and bounded above, so the completeness axiom (A13) guarantees both $\sup X$ and $\sup Y$ exist (i.e. are real numbers). Since $\sup Y$ is an upper bound on Y, it must be an upper bound on X; in particular, $\sup Y$ must be at least as large as the least upper bound on X, which is $\sup X$. In symbols, $\sup Y \geq \sup X$.
5.6 Let X be the set of real numbers with least upper bound a. Let $t \geq 0$. Prove that $t a$ is the least upper bound of the set $t X:=\{t x: x \in X\}$.

The claim is trivial if $t=0$, so we assume henceforth that $t>0$.
First we prove that $t a$ is an upper bound of $t X$: we know a is an upper bound of X, whence $a \geq x$ for all $x \in X$. It follows that $t a \geq t x$ for all $x \in X$, so $t a$ is an upper bound of $t X$.

Next we prove that $t a$ is the least upper bound of $t X$. Suppose y is an upper bound of $t X$, so that $y \geq t x$ for all $x \in X$. Since $t>0$, we deduce $x \leq y / t$ for all $x \in X$, so y / t is an upper bound on X. Since a is the least upper bound on X, we see that $a \leq y / t$. It follows that $t a \leq y$. Since y was an arbitrarily chosen upper bound, we conclude that $t a$ is the least upper bound of X.
5.7 Let X and Y be sets of real numbers with least upper bounds a and b, respectively. Prove that $a+b$ is the least upper bound of the set $X+Y:=\{x+y: x \in X, y \in Y\}$.
Since a and b are upper bounds on X and Y, respectively, we see that $x+y \leq a+b$ for all $x \in X$ and $y \in Y$, whence $a+b$ is an upper bound on $X+Y$.

It remains to show that every upper bound of $X+Y$ is at least as large as $a+b$, or equivalently, that every real number smaller than $a+b$ isn't an upper bound of $X+Y$. Pick an arbitrary $z<a+b$, and set $\epsilon:=(a+b)-z>0$. By (5.1), there exist $x \in X \cap\left(a-\frac{\epsilon}{2}, a\right]$ and $y \in Y \cap\left(b-\frac{\epsilon}{2}, b\right]$, whence

$$
x+y>a+b-\epsilon=z
$$

so z isn't an upper bound of $X+Y$. It follows that $a+b$ is the least upper bound of $X+Y$.
6.2 Prove that if $m, n \in \mathbb{Z}_{\text {pos }}$, then $m n \in \mathbb{Z}_{\text {pos }}$.

We prove this by induction. Let $S(n)$ denote the assertion " $m n \in \mathbb{Z}_{\text {pos }}$ for every $m \in \mathbb{Z}_{\text {pos }}$ ". Clearly $S(1)$ holds.

Suppose $S(n)$ holds. Then for any $m \in \mathbb{Z}_{\text {pos }}$ we have $m(n+1)=m n+m$ by distributive and $m n \in \mathbb{Z}_{\text {pos }}$ by inductive hypothesis. Since we proved in class that $\mathbb{Z}_{\text {pos }}$ is closed under addition, we deduce that $m(n+1) \in \mathbb{Z}_{\text {pos }}$ for every $m \in \mathbb{Z}_{\text {pos }}$, thus proving that $S(n+1)$ holds whenever $S(n)$ does.
6.3 Prove the binomial theorem: for any $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}_{\mathrm{pos}}$, we have

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k},
$$

where $\binom{n}{k}:=\frac{n!}{k!(n-k)!}$.
We'll require the following result:
Lemma. $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$
Proof. We have
$\binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}=\frac{((n-k+1)+k) n!}{k!(n-k+1)!}=\frac{(n+1)!}{k!(n+1-k)!}$
and the claim immediately follows.
We now prove the binomial theorem by induction. Let $S(n)$ denote the assertion of the theorem. Clearly $S(1)$ holds. Now suppose $S(n)$ holds. Then

$$
\begin{aligned}
(a+b)^{n+1} & =(a+b) \sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k+1} \\
& =a^{n+1}+\sum_{k=1}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=1}^{n}\binom{n}{k-1} a^{n-k+1} b^{k}+b^{n+1} \\
& =a^{n+1}+\sum_{k=1}^{n}\left(\binom{n}{k}+\binom{n}{k-1}\right) a^{n-k+1} b^{k}+b^{n+1} \\
& =a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k} a^{n-k+1} b^{k}+b^{n+1} \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} a^{n+1-k} b^{k}
\end{aligned}
$$

6.4 If $\emptyset \neq X \subseteq \mathbb{Z}_{\text {pos }}$ and X is bounded above, then X contains a greatest element.

Our idea will be to reflect X across 0 and consider $-X$; by translating this set sufficiently far to the right, we get a subset of $\mathbb{Z}_{\text {pos }}$, which must have a least element. This, in turn, will tell us what the greatest element of X must be.

Say X is bounded above by $y \in \mathbb{R}$. By the Archimedean property, there's a positive integer $a>y$. In particular, everything in X is a positive integer strictly between 0 and a, which implies $-X+a \subseteq \mathbb{Z}_{\text {pos }}$. By the well-ordering of $\mathbb{Z}_{\text {pos }}$ there must exist a least element m of the set, i.e. $m \in-X+a$ and $m \leq x$ for all $x \in-X+a$.
continued on next page...

Claim. $a-m$ is the greatest element of X.
Proof. First, since $m \in-X+a$, it immediately follows that $a-m \in X$. Thus it suffices to prove maximality of $a-m$. Pick any $t \in X$. We know that $-t+a \geq m$, whence $t \leq a-m$ a claimed.
6.5 Find the flaw in the 'proof' of the following 'theorem' that asserts, in a complicated form, that any two positive integers are equal.
Theorem 1. Given $k, m \in \mathbb{Z}_{\text {pos }}$. If $n=\max \{k, m\}$, then $n=k=m$.
Proof. Let $S(n)$ be the statement of the theorem. If $1=\max \{k, m\}$, then $k=m=1$ by Theorem 6.5, so $S(1)$ is true. Now suppose $S(n)$ is true. If $n+1=\max \{k, m\}$, then $n=\max \{k-1, m-1\}$, whence $S(n)$ implies $n=k-1=m-1$. But then $n+1=k=m$, and we've shown that $S(n+1)$ holds. By induction $S(n)$ must hold for all $n \in \mathbb{Z}_{\text {pos }}$.

This proof is essentially correct! The only flaw in the proof is as follows. It's true that if $n+1=\max \{k, m\}$, then $n=\max \{k-1, m-1\}$. It does not follow, however, that $k-1$ and $m-1$ are positive integers, so the inductive hypothesis doesn't apply. More precisely, $S(1)$ doesn't imply $S(2)$.

Notes.Many of you thought the proof proceeded in the opposite direction from Induction, but this is not the case: it deduces that $S(n+1)$ is true from the assumption that $S(n)$ is true. (That said, I agree that the proof could have been more clearly written!)
6.6 Prove Strong Induction: Suppose that $S(n)$ is a sequence of assertions, one for each $n \in \mathbb{Z}_{\text {pos }}$. If
(a) $S(1)$ is true, and
(b) $S(n)$ is true whenever $S(k)$ is true for all positive integers $k<n$.

Then $S(n)$ is true for all positive integers n.
We prove this by induction. Let $R(n)$ be the assertion " $S(k)$ is true for all positive integers $k \leq n " . R(1)$ is true, by the first hypothesis of Strong Induction that $S(1)$ is true. If $R(n)$ is true, then by the second hypothesis of Strong Induction, $S(n+1)$ is true. But this means that $S(k)$ is true for all positive integers $k \leq n+1$, whence $R(n+1)$ is true. By induction, $R(n)$ is true for all positive integers n. This immediately implies $S(n)$ is true for all positive integers n.
(1) A well-known puzzle game works as follows. (See figure below.) There are three vertical posts, numbered 1,2 , and 3 . At the start of the game, there's a stack of n concentric rings of decreasing radius stacked on post 1 , and the other two posts are empty. The goal is to end up with the entire stack of rings on post 3, again in order of decreasing radius. A move consists of transporting a ring at the top of any stack to another post; however, no ring can be placed on top of a smaller ring. Prove that the entire stack of n rings can be moved onto post 3 in $2^{n}-1$ moves, and that this cannot be done in fewer than $2^{n}-1$ moves.

If $2^{k}-1$ moves is the minimum possible for k rings, then $2^{k+1}-1$ is the minimum for $k+1$ rings, since the bottom ring can't be moved at all until the top k rings are moved somewhere, taking at least $2^{k}-1$ moves, the bottom ring has to be moved to spindle 3 , taking at least 1 move, and then the other rings have to be placed on top of it, taking at least another $2^{k}-1$ moves. Clearly if $n=1$ it takes only one move, which is $2^{n}-1$, so that is our base case and the claim holds by induction.

