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(1) Suppose f: A< B. Prove that A = f(A).

Consider g : A — f(A) defined g(a) := f(a). g inherits injectivity from f, and g is surjective
by definition of f(A). Thus g is a bijection between A and f(A).

(2) Find an explicit bijection (—1,1) —» R. [Meta-analytic, but don’t use functions we haven’t defined in
class.]

There are many solutions: any function defined on (—1,1) whose graph is strictly increasing
throughout the interval and has asymptotes at =1 will do. Here’s one example that’s easier
to prove things about analytically. One example: let f: (—1,1) — R defined by

x
1—a2

fx)
Of course, asserting that it looks bijective is nice, but the pudding is in the proof.
f is injective. If f(z) = f(y), then a bit of algebra implies
(I1+zy)(x—y)=0.
Since zy € (—1,1), we see that 1 + zy # 0, whence x = y.

f is surjective. Pick y € R; I claim there exists o € (—1,1) such that f(a) =y. Ilf y =0
the claim is trivial, so we assume henceforth that y # 0. Let
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An easy computation shows that
1
a1+ oy = —— and o = —1.
Y
Note right away that |«q] # 1, since this would force oy + @y = 0 which is impossible.

From above we deduce that for any = € R,

X
(= o) —a2) = 2" 7

1:(1—x2)<f(x)—1).

Y
In particular, taking = ay or ay implies that f(a;) = f(a) = y. Since ajay = —1 and
|an| # 1, one of ay or ap must be in the interval (—1,1). We’ve thus proved the existence of

some a € (—1,1) such that f(a) =y.




COMMENTS. We haven'’t discussed 7 or any trigonometric functions in this course, so any
proofs involving those are meta-analytic.

(3) Find an explicit bijection (0,1] < (0,1). Your function is allowed to be defined piecewise, so long as you
explicitly state where each element of (0, 1] gets sent. [Hint: Where should you send 17)

There are many possible solutions to this, but they all rely on the trick of finding a countably
infinite subset of (0,1] and suitably shifting it. Here are a few examples of this.
ANSWER 1.

fx) =

g if 2%2 = 1 for some integer k > 0,
x  otherwise.

ANSWER 2.

n+1

1 e 1 .
o(z) = if x = ; for some n € Zpos
x otherwise.

ANSWER 3. We know Q N (0, 1) is countable, so we can enumerate all the elements in the
form QN (0,1) = {q1, 42, q3, .. .}. Now define gy := 1, and consider

h(z) := In+1 ?f =
T if x € Q.

(4) The goal of this exercise is to prove a simple case of Cantor-Schroder-Bernstein (see part (c)).

| Check out the proof of the full Cantor-Schréder-Bernstein theorem on the course website. |

(a) Prove that of all infinite sets, Zpos has the smallest size, i.e. that Zp.s < A for any infinite set A.

Since A is infinite, it’s nonempty, so there exists a; € A. Again by the definition of an
infinite set, |A] # 1, so there exists as € A\ {a1}. More generally, suppose we’ve selected

distinct elements a1, as,...,a, of A (where n € Zyos). Clearly A # {a1,a9,...,a,}, since
otherwise the bijection {1,2,...,n} <» A given by k + aj would mean that A is finite. It
follows that A\ {a1,as,...,a,} # 0, so we can choose a, 11 € A\ {a1,as,...,a,}, and the

process continues. Note that for any k < ¢ we have ay # ay.

Now consider the map Z,os — A defined by n +— a,. To prove this is an injection, we must
show that distinct inputs map to distinct outputs. Pick k # ¢; without loss of generality,
k < ¢. From above we know that ajp # ay. The map is an injection!

(b) Suppose A < Zpos. Without using Cantor-Schroder-Bernstein, prove that A must be countable.

If A is finite, we're done, so we henceforth assume A is infinite.

We're given the existence of some map f : A — Zpos. By (1), A~ f(A). Since f(A) C Zpos,
Theorem 9.1 from the book implies f(A) is countable; since A is infinite and A ~ f(A), we
see that f(A) is infinite. Thus f(A) is infinite and countable, i.e. f(A) = Zpos. We've proved
that A ~ f(A) = Zpos, which shows that A is countable.

(c) Prove (without Cantor-Schroder-Bernstein) that if A < Zpos and Zpos < A then A = Zos.

We're given the existence of some injection f : Zpes — A. In particular, Z,os = f(Zpos) C A,
which means A must be infinite. On the other hand, part (b) implies that A must be
countable. Thus, by definition, A ~ Zps.




(5) In class we sketched an argument for Qpes being countable. Here we give a rigorous proof of this.

(a) Prove that if A <— B and B < C then A — C. [Colloquially: if B is at least as large as A, and C

is at least as large as B, then C is at least as large as A.]

Say f: A< Band g: B — C. Iclaim that go f : A — C. Indeed, if x # y then

f(x) # f(y) since f is injective, and then g(f(x)) + g(f(y)) since ¢ is injective.

Prove that any positive integer can be written in the form 2*n, where k € Zpos U {0} and
positive odd integer.

Recall that a positive integer is even iff it is an element of 2Z,.; otherwise, it’s odd. Note
that, by this definition, every positive integer is even or odd, but not both. We will need the
following

Lemma. If k is an odd positive integer, then In € Zp,s such that k = 2n — 1.

We’ll prove this below. But first, we use it to solve the problem.

Given a € Zpos. If a is odd, we're done: a = 2%. If a is even, consider the set

a . a
S = {27 1 J € Zpos and % € ZPOS}.
S # () since a is even, hence has a least element, say n := 5r- 1 claim that n is odd: if
not, then § = 5+ would belong to S, contradicting the minimality of n. We deduce that
a = 2n in this case as well.

Proof of Lemma. Suppose k is odd. By definition, this means k € Zyos \ 2Zp,0s. Consider the
set ' of all even integers larger than k. Since Zys is well-ordered, E has a least element, e.
By construction, e — k is a positive integer strictly smaller than 2. This implies e — k = 1,
whence k = e — 1. Since e € 27,5, we can write e = 2n for some positive integer n. This
concludes the proof. O

Use part (b) to give an explicit bijection Zpog X Zpos “» Zpos. Prove your map is a bijection.

Consider the map f : Zpos X Zpos — Zpos defined by f(m,n) :=2™~1(2n — 1). By part (b),
f is a surjection. I claim f is also an injection, which will conclude the proof.

Suppose f(a,b) = f(m,n). Without loss of generality, say a > m. Then 2°71(2b — 1) =
2m=1(2n — 1), whence
20-m(2h — 1) = 2n — 1.

The right hand side is odd, so the left hand side must be as well, whence a < m. This forces
a = m, whence 2b — 1 = 2n — 1, which implies b = n. This concludes the proof of injectivity,
and it follows that f must be bijective.

n is a




(d) Construct an explicit injection Qpos = Zpos X Zpos-

The natural thing to do is to define a map Qpos — Zpos X Zpos Via § + (a,b). However, we
have to exercise a bit of care, since this isn’t a function: under this mapping, 1/2 — (1, 2)
and 1/2 — (2,4). To get around this, given ¢ € Qpog, consider

Sq :={b € Zpos : bq € Zpos}-

This set is nonempty by definition of Qp0s, so well-ordering implies the existence of a minimal
element b, := min S,. Now we can define the map g : Qpos —= Zpos X Zpos by 9(q) := (bq, gbg)-
Iknow claim that g is injective. If g(q) = g(r), then (by, gby) = (b, 7b,.), which implies b, = b,
and gb, = rb,; combining these yields ¢ = 7.

(e) Combine parts (a), (c), and (d) to give a short, rigorous proof that Q. is countable.

We just proved that Qpos = Zpos X Zpos, and in part (¢) we proved Zpos X Zpos — Zpos, SO
part (a) implies Qpos “* Zpos- On the other hand, the identity map injects Zpos into Qpos.
Problem (4c) implies that Qs must be countable.

(6) Given a set A, let F denote the set of all functions f : A — {0,1}. Prove that F ~ P(A), and use this
to explain why some use the notation 24 rather than P(A).

Consider the map ¢ : F — P(A) defined by

p(f):={acA: fla) =1}.

I claim ¢ is a bijection.

v is injective. Pick two distinct elements f,g € F. Then there must exist some z € A
such that f(x) # g(z); WLOG f(z) =1 and g(x) = 0. Then = € ¢(f) \ ¢(g), which means
o(f) # ¢(9)-

¢ is surjective. Pick S € P(A). Let xs : A — {0,1} be the characteristic function of S,
- 1 ifzes
xs(2) = {0 otherwise.
Then p(xs) = S.
We’ve thus proved ¢ is a bijection, whence F ~ P(A). Note that any element f € F assigns

one of two values (0 or 1) to each element of A; if A were finite, this would imply there are
2141 possible choices of f.

8.2 Prove that if X ~ Y, then P(X) ~ P(Y).

Since X ~ Y, there exists a bijection ¢ : X < Y. An important observation is

Lemma. ¢ is invertible, i.e. there exists a function 1 : Y — X such that 1o ¢ is the identity
function on X. (We will denote 1 by the symbol ¢p~*.)

The map ¢ induces a natural map between the power sets:

P(X)—= P(Y)
S = ¢(9).

I claim this induced map is a bijection. continued on next page...




First, it’s an injection: if ¢(S) = ¢(T'), then (since ¢ is invertible) S = T. It’s also a
surjection: for any T € P(Y), the set ¢~ (T) gets mapped to T. This concludes the proof
that P(X) = P(Y).

Proof of Lemma. By definition of bijection, we know that for each b € B there exists a
unique element a;, € A. Let ¢(b) := « for each b € B. By construction, if ¢(a) = b then
o ¢(a) = a. Since this holds for every a € A, 1) is the inverse function of ¢. O

9.4 If A is uncountable and A C B, prove that B is uncountable.

If B were countable then B < Zpos, which would imply A < Z,.s. By problem (4b), we
deduce that A would be countable.

9.3 If A is countable and B is uncountable, prove that A U B is uncountable.
This follows from 9.4, since B C AU B. |

9.10 Prove that the plane isn’t a countable union of lines.

Suppose F is a countable family of lines in the plane. We’ll prove there must be some point
in the plane that doesn’t belong to any of the lines in F.

Since R is uncountable, there are uncountably many horizontal lines in the plane. In par-
ticular, one of these lines must not belong to F, say, £. Thus each line in F intersects £ in
at most one point. Since F is countable, while £ has uncountably many points, there must
exist a point on £ that isn’t on any of the lines in F.

7.9 This will be posted as a separate document.
Challenge Problem (Not for submission, but I'm happy to discuss it with you.)

(9*). If A~ ]0,1], prove that A x A ~ A. [This is true for any infinite A, but it’s much harder to prove for A
strictly larger than [0, 1].]

We'll prove the claim for A = [0,1]. It’s clear that [0,1] < [0,1] x [0,1], for example, via
the map x — (z,2). By Cantor-Schroder-Bernstein, it suffices to find an injection in the
other direction.

Given (z,y) € [0,1] x [0, 1], express « and y in binary. There is some ambiguity here, since
some numbers admit two binary expansions; if this is the case, pick the one that has infinitely
many 1’s. Denote these binary expansions as

x = (0.x12223 .. .)2 and y = (0.y192y3 .. .)2
where x;,y; € {0,1} for all i. Now consider the decimal number
o(z,y) == 0.212023 . . .

where z; := x; + y; for every i. It’s an exercise to show that ¢ : [0,1] x [0,1] < [0,1]. (An
alternative approach is to interlace the binary digits of x and y.)




