Williams College
 Department of Mathematics and Statistics
 MATH 350 : REAL ANALYSIS
 Solution Set 6

(1) Suppose $f: A \hookrightarrow B$. Prove that $A \approx f(A)$.

Consider $g: A \rightarrow f(A)$ defined $g(a):=f(a) . g$ inherits injectivity from f, and g is surjective by definition of $f(A)$. Thus g is a bijection between A and $f(A)$.
(2) Find an explicit bijection $(-1,1) \hookrightarrow \mathbb{R}$. [Meta-analytic, but don't use functions we haven't defined in class.]
There are many solutions: any function defined on $(-1,1)$ whose graph is strictly increasing throughout the interval and has asymptotes at ± 1 will do. Here's one example that's easier to prove things about analytically. One example: let $f:(-1,1) \rightarrow \mathbb{R}$ defined by

$$
f(x):=\frac{x}{1-x^{2}}
$$

Of course, asserting that it looks bijective is nice, but the pudding is in the proof.
f is injective. If $f(x)=f(y)$, then a bit of algebra implies

$$
(1+x y)(x-y)=0
$$

Since $x y \in(-1,1)$, we see that $1+x y \neq 0$, whence $x=y$.
f is surjective. Pick $y \in \mathbb{R}$; I claim there exists $\alpha \in(-1,1)$ such that $f(\alpha)=y$. If $y=0$ the claim is trivial, so we assume henceforth that $y \neq 0$. Let

$$
\alpha_{1}:=-\frac{1}{2 y}+\frac{1}{2 y} \sqrt{4 y^{2}+1} \quad \text { and } \quad \alpha_{2}:=-\frac{1}{2 y}-\frac{1}{2 y} \sqrt{4 y^{2}+1}
$$

An easy computation shows that

$$
\alpha_{1}+\alpha_{2}=-\frac{1}{y} \quad \text { and } \quad \alpha_{1} \alpha_{2}=-1
$$

Note right away that $\left|\alpha_{1}\right| \neq 1$, since this would force $\alpha_{1}+\alpha_{2}=0$ which is impossible.
From above we deduce that for any $x \in \mathbb{R}$,

$$
\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)=x^{2}+\frac{x}{y}-1=\left(1-x^{2}\right)\left(\frac{f(x)}{y}-1\right)
$$

In particular, taking $x=\alpha_{1}$ or α_{2} implies that $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)=y$. Since $\alpha_{1} \alpha_{2}=-1$ and $\left|\alpha_{1}\right| \neq 1$, one of α_{1} or α_{2} must be in the interval $(-1,1)$. We've thus proved the existence of some $\alpha \in(-1,1)$ such that $f(\alpha)=y$.

Comments. We haven't discussed π or any trigonometric functions in this course, so any proofs involving those are meta-analytic.
(3) Find an explicit bijection $(0,1] \hookrightarrow(0,1)$. Your function is allowed to be defined piecewise, so long as you explicitly state where each element of $(0,1]$ gets sent. [Hint: Where should you send 1?]
There are many possible solutions to this, but they all rely on the trick of finding a countably infinite subset of $(0,1]$ and suitably shifting it. Here are a few examples of this.
Answer 1.

$$
f(x):= \begin{cases}\frac{x}{2} & \text { if } 2^{k} x=1 \text { for some integer } k \geq 0 \\ x & \text { otherwise }\end{cases}
$$

Answer 2.

$$
g(x):= \begin{cases}\frac{1}{n+1} & \text { if } x=\frac{1}{n} \text { for some } n \in \mathbb{Z}_{\mathrm{pos}} \\ x & \text { otherwise }\end{cases}
$$

Answer 3. We know $\mathbb{Q} \cap(0,1)$ is countable, so we can enumerate all the elements in the form $\mathbb{Q} \cap(0,1)=\left\{q_{1}, q_{2}, q_{3}, \ldots\right\}$. Now define $q_{0}:=1$, and consider

$$
h(x):= \begin{cases}q_{n+1} & \text { if } x=q_{n} \\ x & \text { if } x \notin \mathbb{Q}\end{cases}
$$

(4) The goal of this exercise is to prove a simple case of Cantor-Schröder-Bernstein (see part (c)). Check out the proof of the full Cantor-Schröder-Bernstein theorem on the course website.
(a) Prove that of all infinite sets, $\mathbb{Z}_{\text {pos }}$ has the smallest size, i.e. that $\mathbb{Z}_{\text {pos }} \hookrightarrow A$ for any infinite set A. Since A is infinite, it's nonempty, so there exists $a_{1} \in A$. Again by the definition of an infinite set, $|A| \neq 1$, so there exists $a_{2} \in A \backslash\left\{a_{1}\right\}$. More generally, suppose we've selected distinct elements $a_{1}, a_{2}, \ldots, a_{n}$ of A (where $n \in \mathbb{Z}_{\text {pos }}$). Clearly $A \neq\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, since otherwise the bijection $\{1,2, \ldots, n\} \hookrightarrow A$ given by $k \mapsto a_{k}$ would mean that A is finite. It follows that $A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \neq \emptyset$, so we can choose $a_{n+1} \in A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, and the process continues. Note that for any $k<\ell$ we have $a_{k} \neq a_{\ell}$.

Now consider the map $\mathbb{Z}_{\text {pos }} \rightarrow A$ defined by $n \mapsto a_{n}$. To prove this is an injection, we must show that distinct inputs map to distinct outputs. Pick $k \neq \ell$; without loss of generality, $k<\ell$. From above we know that $a_{k} \neq a_{\ell}$. The map is an injection!
(b) Suppose $A \hookrightarrow \mathbb{Z}_{\text {pos }}$. Without using Cantor-Schröder-Bernstein, prove that A must be countable.

If A is finite, we're done, so we henceforth assume A is infinite.
We're given the existence of some map $f: A \hookrightarrow \mathbb{Z}_{\text {pos }}$. By $(1), A \approx f(A)$. Since $f(A) \subseteq \mathbb{Z}_{\text {pos }}$, Theorem 9.1 from the book implies $f(A)$ is countable; since A is infinite and $A \approx f(A)$, we see that $f(A)$ is infinite. Thus $f(A)$ is infinite and countable, i.e. $f(A) \approx \mathbb{Z}_{\text {pos }}$. We've proved that $A \approx f(A) \approx \mathbb{Z}_{\text {pos }}$, which shows that A is countable.
(c) Prove (without Cantor-Schröder-Bernstein) that if $A \hookrightarrow \mathbb{Z}_{\mathrm{pos}}$ and $\mathbb{Z}_{\mathrm{pos}} \hookrightarrow A$ then $A \approx \mathbb{Z}_{\text {pos }}$. We're given the existence of some injection $f: \mathbb{Z}_{\mathrm{pos}} \hookrightarrow A$. In particular, $\mathbb{Z}_{\mathrm{pos}} \approx f\left(\mathbb{Z}_{\mathrm{pos}}\right) \subseteq A$, which means A must be infinite. On the other hand, part (b) implies that A must be countable. Thus, by definition, $A \approx \mathbb{Z}_{\text {pos }}$.
(5) In class we sketched an argument for $\mathbb{Q}_{\text {pos }}$ being countable. Here we give a rigorous proof of this.
(a) Prove that if $A \hookrightarrow B$ and $B \hookrightarrow C$ then $A \hookrightarrow C$. [Colloquially: if B is at least as large as A, and C is at least as large as B, then C is at least as large as A.]
Say $f: A \hookrightarrow B$ and $g: B \hookrightarrow C$. I claim that $g \circ f: A \hookrightarrow C$. Indeed, if $x \neq y$ then $f(x) \neq f(y)$ since f is injective, and then $g(f(x)) \neq g(f(y))$ since g is injective.
(b) Prove that any positive integer can be written in the form $2^{k} n$, where $k \in \mathbb{Z}_{\text {pos }} \cup\{0\}$ and n is a positive odd integer.
Recall that a positive integer is even iff it is an element of $2 \mathbb{Z}_{\text {pos }}$; otherwise, it's odd. Note that, by this definition, every positive integer is even or odd, but not both. We will need the following
Lemma. If k is an odd positive integer, then $\exists n \in \mathbb{Z}_{\text {pos }}$ such that $k=2 n-1$.
We'll prove this below. But first, we use it to solve the problem.
Given $a \in \mathbb{Z}_{\text {pos }}$. If a is odd, we're done: $a=2^{0} a$. If a is even, consider the set

$$
S:=\left\{\frac{a}{2^{j}}: j \in \mathbb{Z}_{\text {pos }} \text { and } \frac{a}{2^{j}} \in \mathbb{Z}_{\text {pos }}\right\} .
$$

$S \neq \emptyset$ since a is even, hence has a least element, say $n:=\frac{a}{2^{\ell}}$. I claim that n is odd: if not, then $\frac{n}{2}=\frac{a}{2^{\ell+1}}$ would belong to S, contradicting the minimality of n. We deduce that $a=2^{\ell} n$ in this case as well.

Proof of Lemma. Suppose k is odd. By definition, this means $k \in \mathbb{Z}_{\text {pos }} \backslash 2 \mathbb{Z}_{\text {pos }}$. Consider the set E of all even integers larger than k. Since $\mathbb{Z}_{\text {pos }}$ is well-ordered, E has a least element, e. By construction, $e-k$ is a positive integer strictly smaller than 2. This implies $e-k=1$, whence $k=e-1$. Since $e \in 2 \mathbb{Z}_{\text {pos }}$, we can write $e=2 n$ for some positive integer n. This concludes the proof.
(c) Use part (b) to give an explicit bijection $\mathbb{Z}_{\text {pos }} \times \mathbb{Z}_{\text {pos }} \hookrightarrow \mathbb{Z}_{\text {pos }}$. Prove your map is a bijection. Consider the map $f: \mathbb{Z}_{\text {pos }} \times \mathbb{Z}_{\text {pos }} \rightarrow \mathbb{Z}_{\text {pos }}$ defined by $f(m, n):=2^{m-1}(2 n-1)$. By part (b), f is a surjection. I claim f is also an injection, which will conclude the proof.

Suppose $f(a, b)=f(m, n)$. Without loss of generality, say $a \geq m$. Then $2^{a-1}(2 b-1)=$ $2^{m-1}(2 n-1)$, whence

$$
2^{a-m}(2 b-1)=2 n-1
$$

The right hand side is odd, so the left hand side must be as well, whence $a \leq m$. This forces $a=m$, whence $2 b-1=2 n-1$, which implies $b=n$. This concludes the proof of injectivity, and it follows that f must be bijective.
(d) Construct an explicit injection $\mathbb{Q}_{\text {pos }} \hookrightarrow \mathbb{Z}_{\text {pos }} \times \mathbb{Z}_{\text {pos }}$.

The natural thing to do is to define a map $\mathbb{Q}_{\text {pos }} \rightarrow \mathbb{Z}_{\text {pos }} \times \mathbb{Z}_{\text {pos }}$ via $\frac{a}{b} \mapsto(a, b)$. However, we have to exercise a bit of care, since this isn't a function: under this mapping, $1 / 2 \mapsto(1,2)$ and $1 / 2 \mapsto(2,4)$. To get around this, given $q \in \mathbb{Q}_{\text {pos }}$, consider

$$
S_{q}:=\left\{b \in \mathbb{Z}_{\text {pos }}: b q \in \mathbb{Z}_{\text {pos }}\right\} .
$$

This set is nonempty by definition of $\mathbb{Q}_{\text {pos }}$, so well-ordering implies the existence of a minimal element $b_{q}:=\min S_{q}$. Now we can define the map $g: \mathbb{Q}_{\text {pos }} \rightarrow \mathbb{Z}_{\text {pos }} \times \mathbb{Z}_{\text {pos }}$ by $g(q):=\left(b_{q}, q b_{q}\right)$. I know claim that g is injective. If $g(q)=g(r)$, then $\left(b_{q}, q b_{q}\right)=\left(b_{r}, r b_{r}\right)$, which implies $b_{q}=b_{r}$ and $q b_{q}=r b_{r}$; combining these yields $q=r$.
(e) Combine parts (a), (c), and (d) to give a short, rigorous proof that $\mathbb{Q}_{\text {pos }}$ is countable.

We just proved that $\mathbb{Q}_{\text {pos }} \hookrightarrow \mathbb{Z}_{\text {pos }} \times \mathbb{Z}_{\text {pos }}$, and in part (c) we proved $\mathbb{Z}_{\text {pos }} \times \mathbb{Z}_{\text {pos }} \hookrightarrow \mathbb{Z}_{\text {pos }}$, so part (a) implies $\mathbb{Q}_{\text {pos }} \hookrightarrow \mathbb{Z}_{\text {pos }}$. On the other hand, the identity map injects $\mathbb{Z}_{\text {pos }}$ into $\mathbb{Q}_{\text {pos }}$. Problem (4c) implies that $\mathbb{Q}_{\text {pos }}$ must be countable.
(6) Given a set A, let \mathcal{F} denote the set of all functions $f: A \rightarrow\{0,1\}$. Prove that $\mathcal{F} \approx \mathcal{P}(A)$, and use this to explain why some use the notation 2^{A} rather than $\mathcal{P}(A)$.
Consider the map $\varphi: \mathcal{F} \rightarrow \mathcal{P}(A)$ defined by

$$
\varphi(f):=\{a \in A: f(a)=1\} .
$$

I claim φ is a bijection.
φ is injective. Pick two distinct elements $f, g \in \mathcal{F}$. Then there must exist some $x \in A$ such that $f(x) \neq g(x)$; WLOG $f(x)=1$ and $g(x)=0$. Then $x \in \varphi(f) \backslash \varphi(g)$, which means $\varphi(f) \neq \varphi(g)$.
φ is surjective. Pick $S \in \mathcal{P}(A)$. Let $\chi_{S}: A \rightarrow\{0,1\}$ be the characteristic function of S, i.e.

$$
\chi_{S}(x):= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { otherwise }\end{cases}
$$

Then $\varphi\left(\chi_{S}\right)=S$.
We've thus proved φ is a bijection, whence $\mathcal{F} \approx \mathcal{P}(A)$. Note that any element $f \in \mathcal{F}$ assigns one of two values (0 or 1) to each element of A; if A were finite, this would imply there are $2^{|A|}$ possible choices of f.
8.2 Prove that if $X \approx Y$, then $\mathcal{P}(X) \approx \mathcal{P}(Y)$.

Since $X \approx Y$, there exists a bijection $\phi: X \hookrightarrow Y$. An important observation is
Lemma. ϕ is invertible, i.e. there exists a function $\psi: Y \rightarrow X$ such that $\psi \circ \phi$ is the identity function on X. (We will denote ψ by the symbol ϕ^{-1}.)

The map ϕ induces a natural map between the power sets:

$$
\begin{aligned}
\mathcal{P}(X) & \rightarrow \mathcal{P}(Y) \\
S & \mapsto \phi(S) .
\end{aligned}
$$

I claim this induced map is a bijection.
continued on next page...

First, it's an injection: if $\phi(S)=\phi(T)$, then (since ϕ is invertible) $S=T$. It's also a surjection: for any $T \in \mathcal{P}(Y)$, the set $\phi^{-1}(T)$ gets mapped to T. This concludes the proof that $\mathcal{P}(X) \approx \mathcal{P}(Y)$.

Proof of Lemma. By definition of bijection, we know that for each $b \in B$ there exists a unique element $\alpha_{b} \in A$. Let $\psi(b):=\alpha_{b}$ for each $b \in B$. By construction, if $\phi(a)=b$ then $\psi \circ \phi(a)=a$. Since this holds for every $a \in A, \psi$ is the inverse function of ϕ.
9.4 If A is uncountable and $A \subseteq B$, prove that B is uncountable.

If B were countable then $B \hookrightarrow \mathbb{Z}_{\text {pos }}$, which would imply $A \hookrightarrow \mathbb{Z}_{\text {pos }}$. By problem (4b), we deduce that A would be countable.
9.3 If A is countable and B is uncountable, prove that $A \cup B$ is uncountable.

This follows from 9.4 , since $B \subseteq A \cup B$.
9.10 Prove that the plane isn't a countable union of lines.

Suppose \mathcal{F} is a countable family of lines in the plane. We'll prove there must be some point in the plane that doesn't belong to any of the lines in \mathcal{F}.

Since \mathbb{R} is uncountable, there are uncountably many horizontal lines in the plane. In particular, one of these lines must not belong to \mathcal{F}, say, \mathcal{L}. Thus each line in \mathcal{F} intersects \mathcal{L} in at most one point. Since \mathcal{F} is countable, while \mathcal{L} has uncountably many points, there must exist a point on \mathcal{L} that isn't on any of the lines in \mathcal{F}.
7.9 This will be posted as a separate document.

Challenge Problem (Not for submission, but I'm happy to discuss it with you.)
$\mathbf{(9 *)}$. If $A \approx[0,1]$, prove that $A \times A \approx A$. [This is true for any infinite A, but it's much harder to prove for A strictly larger than $[0,1]$.]
We'll prove the claim for $A=[0,1]$. It's clear that $[0,1] \hookrightarrow[0,1] \times[0,1]$, for example, via the map $x \mapsto(x, x)$. By Cantor-Schröder-Bernstein, it suffices to find an injection in the other direction.

Given $(x, y) \in[0,1] \times[0,1]$, express x and y in binary. There is some ambiguity here, since some numbers admit two binary expansions; if this is the case, pick the one that has infinitely many 1's. Denote these binary expansions as

$$
x=\left(0 . x_{1} x_{2} x_{3} \ldots\right)_{2} \quad \text { and } \quad y=\left(0 . y_{1} y_{2} y_{3} \ldots\right)_{2}
$$

where $x_{i}, y_{i} \in\{0,1\}$ for all i. Now consider the decimal number

$$
\varphi(x, y):=0 . z_{1} z_{2} z_{3} \ldots
$$

where $z_{i}:=x_{i}+y_{i}$ for every i. It's an exercise to show that $\varphi:[0,1] \times[0,1] \hookrightarrow[0,1]$. (An alternative approach is to interlace the binary digits of x and y.)

