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(1) Suppose f : A ↪→ B. Prove that A ≈ f(A).

Consider g : A→ f(A) defined g(a) := f(a). g inherits injectivity from f , and g is surjective
by definition of f(A). Thus g is a bijection between A and f(A).

(2) Find an explicit bijection (−1, 1) ↪→→ R. [Meta-analytic, but don’t use functions we haven’t defined in
class.]

There are many solutions: any function defined on (−1, 1) whose graph is strictly increasing
throughout the interval and has asymptotes at ±1 will do. Here’s one example that’s easier
to prove things about analytically. One example: let f : (−1, 1) → R defined by

f(x) :=
x

1− x2
.

Of course, asserting that it looks bijective is nice, but the pudding is in the proof.

f is injective. If f(x) = f(y), then a bit of algebra implies

(1 + xy)(x− y) = 0.

Since xy ∈ (−1, 1), we see that 1 + xy ̸= 0, whence x = y.

f is surjective. Pick y ∈ R; I claim there exists α ∈ (−1, 1) such that f(α) = y. If y = 0
the claim is trivial, so we assume henceforth that y ̸= 0. Let

α1 := − 1

2y
+

1

2y

√
4y2 + 1 and α2 := − 1

2y
− 1

2y

√
4y2 + 1

An easy computation shows that

α1 + α2 = −1

y
and α1α2 = −1.

Note right away that |α1| ≠ 1, since this would force α1 + α2 = 0 which is impossible.

From above we deduce that for any x ∈ R,

(x− α1)(x− α2) = x2 +
x

y
− 1 = (1− x2)

(
f(x)

y
− 1

)
.

In particular, taking x = α1 or α2 implies that f(α1) = f(α2) = y. Since α1α2 = −1 and
|α1| ≠ 1, one of α1 or α2 must be in the interval (−1, 1). We’ve thus proved the existence of
some α ∈ (−1, 1) such that f(α) = y.



Comments. We haven’t discussed π or any trigonometric functions in this course, so any
proofs involving those are meta-analytic.

(3) Find an explicit bijection (0, 1] ↪→→ (0, 1). Your function is allowed to be defined piecewise, so long as you
explicitly state where each element of (0, 1] gets sent. [Hint: Where should you send 1? ]

There are many possible solutions to this, but they all rely on the trick of finding a countably
infinite subset of (0, 1] and suitably shifting it. Here are a few examples of this.
Answer 1.

f(x) :=

{
x
2 if 2kx = 1 for some integer k ≥ 0,

x otherwise.

Answer 2.

g(x) :=

{
1

n+1 if x = 1
n for some n ∈ Zpos

x otherwise.

Answer 3. We know Q ∩ (0, 1) is countable, so we can enumerate all the elements in the
form Q ∩ (0, 1) = {q1, q2, q3, . . .}. Now define q0 := 1, and consider

h(x) :=

{
qn+1 if x = qn

x if x ̸∈ Q.

(4) The goal of this exercise is to prove a simple case of Cantor-Schröder-Bernstein (see part (c)).

Check out the proof of the full Cantor-Schröder-Bernstein theorem on the course website.

(a) Prove that of all infinite sets, Zpos has the smallest size, i.e. that Zpos ↪→ A for any infinite set A.

Since A is infinite, it’s nonempty, so there exists a1 ∈ A. Again by the definition of an
infinite set, |A| ̸= 1, so there exists a2 ∈ A \ {a1}. More generally, suppose we’ve selected
distinct elements a1, a2, . . . , an of A (where n ∈ Zpos). Clearly A ̸= {a1, a2, . . . , an}, since
otherwise the bijection {1, 2, . . . , n} ↪→→ A given by k 7→ ak would mean that A is finite. It
follows that A \ {a1, a2, . . . , an} ≠ ∅, so we can choose an+1 ∈ A \ {a1, a2, . . . , an}, and the
process continues. Note that for any k < ℓ we have ak ̸= aℓ.

Now consider the map Zpos → A defined by n 7→ an. To prove this is an injection, we must
show that distinct inputs map to distinct outputs. Pick k ̸= ℓ; without loss of generality,
k < ℓ. From above we know that ak ̸= aℓ. The map is an injection!

(b) Suppose A ↪→ Zpos. Without using Cantor-Schröder-Bernstein, prove that A must be countable.

If A is finite, we’re done, so we henceforth assume A is infinite.

We’re given the existence of some map f : A ↪→ Zpos. By (1), A ≈ f(A). Since f(A) ⊆ Zpos,
Theorem 9.1 from the book implies f(A) is countable; since A is infinite and A ≈ f(A), we
see that f(A) is infinite. Thus f(A) is infinite and countable, i.e. f(A) ≈ Zpos. We’ve proved
that A ≈ f(A) ≈ Zpos, which shows that A is countable.

(c) Prove (without Cantor-Schröder-Bernstein) that if A ↪→ Zpos and Zpos ↪→ A then A ≈ Zpos.

We’re given the existence of some injection f : Zpos ↪→ A. In particular, Zpos ≈ f(Zpos) ⊆ A,
which means A must be infinite. On the other hand, part (b) implies that A must be
countable. Thus, by definition, A ≈ Zpos.
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(5) In class we sketched an argument for Qpos being countable. Here we give a rigorous proof of this.

(a) Prove that if A ↪→ B and B ↪→ C then A ↪→ C. [Colloquially: if B is at least as large as A, and C
is at least as large as B, then C is at least as large as A.]

Say f : A ↪→ B and g : B ↪→ C. I claim that g ◦ f : A ↪→ C. Indeed, if x ̸= y then
f(x) ̸= f(y) since f is injective, and then g

(
f(x)

)
̸= g

(
f(y)

)
since g is injective.

(b) Prove that any positive integer can be written in the form 2kn, where k ∈ Zpos ∪ {0} and n is a
positive odd integer.

Recall that a positive integer is even iff it is an element of 2Zpos; otherwise, it’s odd. Note
that, by this definition, every positive integer is even or odd, but not both. We will need the
following

Lemma. If k is an odd positive integer, then ∃n ∈ Zpos such that k = 2n− 1.

We’ll prove this below. But first, we use it to solve the problem.

Given a ∈ Zpos. If a is odd, we’re done: a = 20a. If a is even, consider the set

S :=
{ a

2j
: j ∈ Zpos and

a

2j
∈ Zpos

}
.

S ̸= ∅ since a is even, hence has a least element, say n := a
2ℓ
. I claim that n is odd: if

not, then n
2 = a

2ℓ+1 would belong to S, contradicting the minimality of n. We deduce that

a = 2ℓn in this case as well.

Proof of Lemma. Suppose k is odd. By definition, this means k ∈ Zpos \2Zpos. Consider the
set E of all even integers larger than k. Since Zpos is well-ordered, E has a least element, e.
By construction, e − k is a positive integer strictly smaller than 2. This implies e − k = 1,
whence k = e − 1. Since e ∈ 2Zpos, we can write e = 2n for some positive integer n. This
concludes the proof.

(c) Use part (b) to give an explicit bijection Zpos × Zpos ↪→→ Zpos. Prove your map is a bijection.

Consider the map f : Zpos × Zpos → Zpos defined by f(m,n) := 2m−1(2n− 1). By part (b),
f is a surjection. I claim f is also an injection, which will conclude the proof.

Suppose f(a, b) = f(m,n). Without loss of generality, say a ≥ m. Then 2a−1(2b − 1) =
2m−1(2n− 1), whence

2a−m(2b− 1) = 2n− 1.

The right hand side is odd, so the left hand side must be as well, whence a ≤ m. This forces
a = m, whence 2b− 1 = 2n− 1, which implies b = n. This concludes the proof of injectivity,
and it follows that f must be bijective.
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(d) Construct an explicit injection Qpos ↪→ Zpos × Zpos.

The natural thing to do is to define a map Qpos → Zpos × Zpos via
a
b 7→ (a, b). However, we

have to exercise a bit of care, since this isn’t a function: under this mapping, 1/2 7→ (1, 2)
and 1/2 7→ (2, 4). To get around this, given q ∈ Qpos, consider

Sq := {b ∈ Zpos : bq ∈ Zpos}.

This set is nonempty by definition of Qpos, so well-ordering implies the existence of a minimal
element bq := minSq. Now we can define the map g : Qpos → Zpos×Zpos by g(q) := (bq, qbq).
I know claim that g is injective. If g(q) = g(r), then (bq, qbq) = (br, rbr), which implies bq = br
and qbq = rbr; combining these yields q = r.

(e) Combine parts (a), (c), and (d) to give a short, rigorous proof that Qpos is countable.

We just proved that Qpos ↪→ Zpos × Zpos, and in part (c) we proved Zpos × Zpos ↪→ Zpos, so
part (a) implies Qpos ↪→ Zpos. On the other hand, the identity map injects Zpos into Qpos.
Problem (4c) implies that Qpos must be countable.

(6) Given a set A, let F denote the set of all functions f : A → {0, 1}. Prove that F ≈ P(A), and use this
to explain why some use the notation 2A rather than P(A).

Consider the map φ : F → P(A) defined by

φ(f) := {a ∈ A : f(a) = 1}.

I claim φ is a bijection.

φ is injective. Pick two distinct elements f, g ∈ F . Then there must exist some x ∈ A
such that f(x) ̸= g(x); WLOG f(x) = 1 and g(x) = 0. Then x ∈ φ(f) \ φ(g), which means
φ(f) ̸= φ(g).

φ is surjective. Pick S ∈ P(A). Let χS : A → {0, 1} be the characteristic function of S,
i.e.

χS(x) :=

{
1 if x ∈ S

0 otherwise.

Then φ(χS) = S.

We’ve thus proved φ is a bijection, whence F ≈ P(A). Note that any element f ∈ F assigns
one of two values (0 or 1) to each element of A; if A were finite, this would imply there are
2|A| possible choices of f .

8.2 Prove that if X ≈ Y , then P(X) ≈ P(Y ).

Since X ≈ Y , there exists a bijection ϕ : X ↪→→ Y . An important observation is

Lemma. ϕ is invertible, i.e. there exists a function ψ : Y → X such that ψ◦ϕ is the identity
function on X. (We will denote ψ by the symbol ϕ−1.)

The map ϕ induces a natural map between the power sets:

P(X) → P(Y )

S 7→ ϕ(S).

I claim this induced map is a bijection. continued on next page...
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First, it’s an injection: if ϕ(S) = ϕ(T ), then (since ϕ is invertible) S = T . It’s also a
surjection: for any T ∈ P(Y ), the set ϕ−1(T ) gets mapped to T . This concludes the proof
that P(X) ≈ P(Y ).

Proof of Lemma. By definition of bijection, we know that for each b ∈ B there exists a
unique element αb ∈ A. Let ψ(b) := αb for each b ∈ B. By construction, if ϕ(a) = b then
ψ ◦ ϕ(a) = a. Since this holds for every a ∈ A, ψ is the inverse function of ϕ.

9.4 If A is uncountable and A ⊆ B, prove that B is uncountable.

If B were countable then B ↪→ Zpos, which would imply A ↪→ Zpos. By problem (4b), we
deduce that A would be countable.

9.3 If A is countable and B is uncountable, prove that A ∪B is uncountable.

This follows from 9.4, since B ⊆ A ∪B.

9.10 Prove that the plane isn’t a countable union of lines.

Suppose F is a countable family of lines in the plane. We’ll prove there must be some point
in the plane that doesn’t belong to any of the lines in F .

Since R is uncountable, there are uncountably many horizontal lines in the plane. In par-
ticular, one of these lines must not belong to F , say, L. Thus each line in F intersects L in
at most one point. Since F is countable, while L has uncountably many points, there must
exist a point on L that isn’t on any of the lines in F .

7.9 This will be posted as a separate document.

Challenge Problem (Not for submission, but I’m happy to discuss it with you.)

(9*). If A ≈ [0, 1], prove that A×A ≈ A. [This is true for any infinite A, but it’s much harder to prove for A
strictly larger than [0, 1].]

We’ll prove the claim for A = [0, 1]. It’s clear that [0, 1] ↪→ [0, 1] × [0, 1], for example, via
the map x 7→ (x, x). By Cantor-Schröder-Bernstein, it suffices to find an injection in the
other direction.

Given (x, y) ∈ [0, 1]× [0, 1], express x and y in binary. There is some ambiguity here, since
some numbers admit two binary expansions; if this is the case, pick the one that has infinitely
many 1’s. Denote these binary expansions as

x = (0.x1x2x3 . . .)2 and y = (0.y1y2y3 . . .)2

where xi, yi ∈ {0, 1} for all i. Now consider the decimal number

φ(x, y) := 0.z1z2z3 . . .

where zi := xi + yi for every i. It’s an exercise to show that φ : [0, 1] × [0, 1] ↪→ [0, 1]. (An
alternative approach is to interlace the binary digits of x and y.)
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