Williams College
 Department of Mathematics and Statistics
 MATH 350 : REAL ANALYSIS Solution Set 7

(1) Checking some fundamentals...
(a) Is $\infty \in \mathbb{R}$? Carefully formulate what properties you'd like such a number to have, and then prove that it is or isn't an element of \mathbb{R}.
Whichever reasonable properties you might require of ∞, it cannot live in \mathbb{R}. For example, you might expect $\infty+1=\infty$; this would contradict trichotomy, since we know $1>0$. Or you might wish $\infty>x$ for all $x \in \mathbb{R}$; this would contradict the Archimedean property. If you come up with a property you feel ∞ should have that doesn't contradict anything we know about \mathbb{R}, please let me know!
(b) Suppose $|x| \leq \epsilon$ for every $\epsilon>0$. Prove that $x=0$.

Suppose $|x| \leq \epsilon$ for every positive ϵ. In particular, $|x| \leq \frac{1}{n}$ for every $n \in \mathbb{Z}_{\text {pos }}$. If $x \neq 0$, then we'd have $n \leq \frac{1}{|x|}$ for every $n \in \mathbb{Z}_{\text {pos }}$, contradicting the Archimedean property.
(c) Use (b) to prove that $0 . \overline{9}=1$, where $0 . \overline{9}$ denotes the number $0.9999 \cdots$ written in decimal notation.

Set $x:=1-0 . \overline{9}$. Clearly $x \geq 0$, so $|x|=x$. Given $\epsilon>0$, Archimedean Property yields a positive integer $n>\frac{1}{\epsilon}$. Induction implies $10^{n}>n$, from which it follows that

$$
|x|=x<0 . \underbrace{00 \cdots 0}_{n-1} 1=\frac{1}{10^{n}}<\frac{1}{n}<\epsilon
$$

Since $\epsilon>0$ was arbitrary, (b) implies $x=0$.
(d) Prove that there does not exist a smallest positive real number.

Suppose α were a smallest positive real number. Then $0<\alpha \leq \epsilon$ for all $\epsilon>0$. Part (b) implies $\alpha=0$, a contradiction.
10.3 Prove $\lim _{n \rightarrow \infty} \frac{1}{n+2}=0$.

Proof. Fix $\epsilon>0$. For every $n>\frac{1}{\epsilon}$ we have $\left|\frac{1}{n+2}-0\right|=\frac{1}{n+2} \leq \frac{1}{n}<\epsilon$.
Comments. Note that we didn't use the bound $n>\frac{1}{\epsilon-2}$, because this causes problems if
$\epsilon \leq 2$!
10.5 Prove $\lim _{n \rightarrow \infty} \frac{n}{n+2}=1$.

Proof. Fix $\epsilon>0$. For every $n>\frac{10}{\epsilon}$ we have $\left|\frac{n}{n+2}-1\right|=\frac{2}{n}<\frac{\epsilon}{5}<\epsilon$.
Comments. Why $\frac{10}{\epsilon}$? Because in analysis, we're never trying to optimize... we just need a bound that's good enough.
10.7 Prove that $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$.

Proof. Fix $\epsilon>0$. Then for all $n>\frac{1}{\epsilon}$ we have $\left|\frac{(-1)^{n}}{n}-0\right|=\left|\frac{(-1)^{n}}{n}\right|=\frac{1}{n}<\epsilon$.
10.12 Suppose $\lim _{n \rightarrow \infty} a_{n}=L$. Prove that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|L|$.

We first prove a helpful consequence of the triangle inequality:
Lemma 1. $|x-y| \geq||x|-|y||$.
Proof. The triangle inequality implies $|x-y|+|y| \geq|x|$, whence $|x-y| \geq|x|-|y|$. Switching the roles of x and y, this implies $|y-x| \geq|y|-|x|$. Since $|x-y|=|y-x|$, we deduce that

$$
|x-y| \geq|x|-|y| \quad \text { and } \quad|x-y| \geq|y|-|x|
$$

Since $||x|-|y||$ is either $|x|-|y|$ or $|y|-|x|$, we conclude that $|x-y| \geq||x|-|y||$.
Claim. $a_{n} \rightarrow L \quad \Longrightarrow \quad\left|a_{n}\right| \rightarrow|L|$.
Proof. Given $\epsilon>0$. We know there exists N such that $\left|a_{n}-L\right|<\epsilon$ whenever $n>N$. The lemma implies

$$
\left|a_{n}-L\right| \geq\left|\left|a_{n}\right|-|L|\right|
$$

Thus $\forall n>N$ we have

$$
\left|\left|a_{n}\right|-|L|\right| \leq\left|a_{n}-L\right|<\epsilon
$$

(2) Consider the sequence

$$
a_{n}:= \begin{cases}1 & \text { if } n=2^{k} \text { for some } k \in \mathbb{Z}_{\text {pos }} \\ \frac{1}{n} & \text { otherwise }\end{cases}
$$

so the sequence begins $1,1, \frac{1}{3}, 1, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, 1, \frac{1}{9}, \ldots$ Does $\left(a_{n}\right)$ converge? Justify your answer with a proof.
We start with two lemmas that will be useful later.
Lemma 2. For any N, there exists $m \in \mathbb{Z}_{\text {pos }}$ such that $2^{m}>N$.
Proof. By induction, $2^{k}>k$ for all $k \in \mathbb{Z}_{\text {pos }}$. Archimedean property implies the existence of $m>N$. Thus $2^{m}>N$.

Lemma 3. For any N, there exists $m>N$ such that $m \neq 2^{k}$ for any $k \in \mathbb{Z}_{\text {pos }}$.
Proof. Pick any N. By Lemma 2 , there exists $\ell \in \mathbb{Z}_{\text {pos }}$ such that $2^{\ell}>N$. I claim that $2^{\ell}+1$ cannot be a power of 2 . Indeed, observe that $2^{\ell+1}-2^{\ell}=2^{\ell} \geq 2$, whence

$$
2^{\ell}<2^{\ell}+1<2^{\ell}+2 \leq 2^{\ell+1}
$$

It follows that
$m \leq \ell \Longrightarrow 2^{m} \leq 2^{\ell}<2^{\ell}+1 \quad$ and $\quad m \geq \ell+1 \Longrightarrow 2^{m} \geq 2^{\ell+1}>2^{\ell}+1$.
There are no positive integers between ℓ and $\ell+1$, whence $2^{\ell}+1 \neq 2^{m}$ for any $m \in \mathbb{Z}_{\text {pos }}$.
continued on next page...

Claim. (a_{n}) diverges.
Proof. Suppose the sequence converged, say, $a_{n} \rightarrow L$. Then there exists N such that

$$
\left|a_{n}-L\right|<\frac{1}{100}
$$

for all $n>N$. Note that we may safely assume that $N \geq 1$. By Lemma 2 (see below), there exists an integer larger than N that's a power of 2 , whence

$$
|1-L|<\frac{1}{100} .
$$

By Lemma 3 (see below), there exists some integer $k>N$ that's not a power of 2 , whence

$$
\left|\frac{1}{k}-L\right|<\frac{1}{100}
$$

Since $k \geq 2$, we have

$$
\frac{1}{2} \leq\left|1-\frac{1}{k}\right|=\left|1-L+L-\frac{1}{k}\right| \leq|1-L|+\left|\frac{1}{k}-L\right|<\frac{1}{50} .
$$

This contradiction implies that $\left(a_{n}\right)$ cannot converge.
(3) Suppose (a_{n}) and $\left(b_{n}\right)$ are convergent sequences and $a_{n}<b_{n}$ for all $n \in \mathbb{Z}_{\text {pos }}$. Does it follow that $\lim _{n \rightarrow \infty} a_{n}<\lim _{n \rightarrow \infty} b_{n}$? Either prove this, or provide a counterexample.
No, the limits might be equal. For example,

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} 1
$$

(4) We call a sequence $\left(x_{n}\right)$ bounded iff the set $\left\{x_{n}: n \in \mathbb{Z}_{\text {pos }}\right\}$ is bounded. Show (by example) that it's possible to have a bounded sequence (a_{n}) and a convergent sequence (b_{n}) such that both ($a_{n}+b_{n}$) and $\left(a_{n} b_{n}\right)$ diverge.
There are many examples, e.g. $a_{n}=(-1)^{n}$ and $b_{n}=1$.
(5) Given a sequence $\left(a_{n}\right)$, set $b_{n}:=a_{2 n}-a_{n}$.
(a) Suppose $\left(a_{n}\right)$ converges. Must $\left(b_{n}\right)$ converge? Justify your answer with a proof based on the definition of limit (i.e. without using theorems about limits).
Claim. $\lim _{n \rightarrow \infty} b_{n}=0$.
Proof. Given $\epsilon>0$. Since (a_{n}) converges, say to L, then $\left|a_{n}-L\right|<\frac{\epsilon}{2}$ for all sufficiently large n. It follows that

$$
\left|b_{n}\right|=\left|a_{2 n}-a_{n}\right|=\left|a_{2 n}-L+L-a_{n}\right| \leq\left|a_{2 n}-L\right|+\left|L-a_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

for all sufficiently large n.
(b) Give an example of $\left(a_{n}\right)$ that diverges such that $\left(b_{n}\right)$ diverges.

Let $a_{n}:=n$, which implies $b_{n}=n$. It therefore suffices to prove that $\left(a_{n}\right)$ diverges. For any $L \in \mathbb{R}$, the Archimedean property implies the existence of $N>L+1$, which means that for all $n>N$ we have $\left|a_{n}-L\right|>1$. Thus a_{n} cannot converge to L.
(c) Give an example of $\left(a_{n}\right)$ that diverges such that $\left(b_{n}\right)$ converges.

The sequence $\left(a_{n}\right)$ from problem (2) does the trick, since

$$
b_{n}= \begin{cases}0 & \text { if } n=2^{k} \\ -\frac{1}{2 n} & \text { otherwise }\end{cases}
$$

Thus $b_{n} \rightarrow 0$, since for any $\epsilon>0$ we have $\left|b_{n}\right|<\epsilon$ for all $n>\frac{1}{\epsilon}$.
(6) Consider the sequence $a_{n}:=n+\frac{(-1)^{n}}{n}$. Does $\left(a_{n}\right)$ converge? Justify your answer with a proof.

Claim. $\left(a_{n}\right)$ diverges.
Proof. Note that $a_{n} \geq n-1$ for every $n \in \mathbb{Z}_{\text {pos }}$. For any $L \in \mathbb{R}$, the Archimedean property implies the existence of $N>L+2$, whence for every $n>N$ we have $a_{n} \geq n-1>N-1>L$ so

$$
\left|a_{n}-L\right|=a_{n}-L>(N-1)-L>1 .
$$

Thus a_{n} cannot converge to L. Since L was arbitrary, we conclude that a_{n} diverges.

