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(1) Checking some fundamentals...

(a) Is ∞ ∈ R? Carefully formulate what properties you’d like such a number to have, and then prove
that it is or isn’t an element of R.
Whichever reasonable properties you might require of ∞, it cannot live in R. For example,
you might expect ∞ + 1 = ∞; this would contradict trichotomy, since we know 1 > 0. Or
you might wish ∞ > x for all x ∈ R; this would contradict the Archimedean property. If
you come up with a property you feel ∞ should have that doesn’t contradict anything we
know about R, please let me know!

(b) Suppose |x| ≤ ϵ for every ϵ > 0. Prove that x = 0.

Suppose |x| ≤ ϵ for every positive ϵ. In particular, |x| ≤ 1
n for every n ∈ Zpos. If x ̸= 0, then

we’d have n ≤ 1
|x| for every n ∈ Zpos, contradicting the Archimedean property.

(c) Use (b) to prove that 0.9 = 1, where 0.9 denotes the number 0.9999 · · · written in decimal notation.

Set x := 1 − 0.9. Clearly x ≥ 0, so |x| = x. Given ϵ > 0, Archimedean Property yields a
positive integer n > 1

ϵ . Induction implies 10n > n, from which it follows that

|x| = x < 0. 00 · · · 0︸ ︷︷ ︸
n−1

1 =
1

10n
<

1

n
< ϵ.

Since ϵ > 0 was arbitrary, (b) implies x = 0.

(d) Prove that there does not exist a smallest positive real number.

Suppose α were a smallest positive real number. Then 0 < α ≤ ϵ for all ϵ > 0. Part (b)
implies α = 0, a contradiction.

10.3 Prove lim
n→∞

1
n+2 = 0.

Proof. Fix ϵ > 0. For every n > 1
ϵ we have

∣∣∣ 1
n+2 − 0

∣∣∣ = 1
n+2 ≤ 1

n < ϵ.

Comments. Note that we didn’t use the bound n > 1
ϵ−2 , because this causes problems if

ϵ ≤ 2!

10.5 Prove lim
n→∞

n
n+2 = 1.

Proof. Fix ϵ > 0. For every n > 10
ϵ we have

∣∣∣ n
n+2 − 1

∣∣∣ = 2
n < ϵ

5 < ϵ.

Comments. Why 10
ϵ ? Because in analysis, we’re never trying to optimize... we just need a

bound that’s good enough.



10.7 Prove that lim
n→∞

(−1)n

n = 0.

Proof. Fix ϵ > 0. Then for all n > 1
ϵ we have

∣∣∣ (−1)n

n − 0
∣∣∣ = ∣∣∣ (−1)n

n

∣∣∣ = 1
n < ϵ.

10.12 Suppose lim
n→∞

an = L. Prove that lim
n→∞

|an| = |L|.

We first prove a helpful consequence of the triangle inequality:

Lemma 1. |x− y| ≥
∣∣∣|x| − |y|

∣∣∣.
Proof. The triangle inequality implies |x−y|+ |y| ≥ |x|, whence |x−y| ≥ |x|−|y|. Switching
the roles of x and y, this implies |y − x| ≥ |y| − |x|. Since |x− y| = |y − x|, we deduce that

|x− y| ≥ |x| − |y| and |x− y| ≥ |y| − |x|,

Since
∣∣∣|x| − |y|

∣∣∣ is either |x| − |y| or |y| − |x|, we conclude that |x− y| ≥
∣∣∣|x| − |y|

∣∣∣.
Claim. an → L =⇒ |an| → |L|.

Proof. Given ϵ > 0. We know there exists N such that |an − L| < ϵ whenever n > N . The
lemma implies

|an − L| ≥
∣∣∣|an| − |L|

∣∣∣.
Thus ∀n > N we have ∣∣∣|an| − |L|

∣∣∣ ≤ |an − L| < ϵ.

(2) Consider the sequence

an :=

{
1 if n = 2k for some k ∈ Zpos

1
n otherwise,

so the sequence begins 1, 1, 1
3 , 1,

1
5 ,

1
6 ,

1
7 , 1,

1
9 , . . . Does (an) converge? Justify your answer with a proof.

We start with two lemmas that will be useful later.

Lemma 2. For any N , there exists m ∈ Zpos such that 2m > N .

Proof. By induction, 2k > k for all k ∈ Zpos. Archimedean property implies the existence of
m > N . Thus 2m > N .

Lemma 3. For any N , there exists m > N such that m ̸= 2k for any k ∈ Zpos.

Proof. Pick any N . By Lemma 2, there exists ℓ ∈ Zpos such that 2ℓ > N . I claim that 2ℓ+1
cannot be a power of 2. Indeed, observe that 2ℓ+1 − 2ℓ = 2ℓ ≥ 2, whence

2ℓ < 2ℓ + 1 < 2ℓ + 2 ≤ 2ℓ+1.

It follows that

m ≤ ℓ =⇒ 2m ≤ 2ℓ < 2ℓ + 1 and m ≥ ℓ+ 1 =⇒ 2m ≥ 2ℓ+1 > 2ℓ + 1.

There are no positive integers between ℓ and ℓ+1, whence 2ℓ+1 ̸= 2m for any m ∈ Zpos.

continued on next page...
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Claim. (an) diverges.

Proof. Suppose the sequence converged, say, an → L. Then there exists N such that

|an − L| < 1

100

for all n > N . Note that we may safely assume that N ≥ 1. By Lemma 2 (see below), there
exists an integer larger than N that’s a power of 2, whence

|1− L| < 1

100
.

By Lemma 3 (see below), there exists some integer k > N that’s not a power of 2, whence∣∣∣∣1k − L

∣∣∣∣ < 1

100
.

Since k ≥ 2, we have

1

2
≤

∣∣∣∣1− 1

k

∣∣∣∣ = ∣∣∣∣1− L+ L− 1

k

∣∣∣∣ ≤ |1− L|+
∣∣∣∣1k − L

∣∣∣∣ < 1

50
.

This contradiction implies that (an) cannot converge.

(3) Suppose (an) and (bn) are convergent sequences and an < bn for all n ∈ Zpos. Does it follow that
lim
n→∞

an < lim
n→∞

bn? Either prove this, or provide a counterexample.

No, the limits might be equal. For example,

lim
n→∞

(
1− 1

n

)
= lim

n→∞
1

(4) We call a sequence (xn) bounded iff the set {xn : n ∈ Zpos} is bounded. Show (by example) that it’s
possible to have a bounded sequence (an) and a convergent sequence (bn) such that both (an + bn) and
(anbn) diverge.

There are many examples, e.g. an = (−1)n and bn = 1.

(5) Given a sequence (an), set bn := a2n − an.

(a) Suppose (an) converges. Must (bn) converge? Justify your answer with a proof based on the
definition of limit (i.e. without using theorems about limits).

Claim. lim
n→∞

bn = 0.

Proof. Given ϵ > 0. Since (an) converges, say to L, then |an − L| < ϵ
2 for all sufficiently

large n. It follows that

|bn| = |a2n − an| = |a2n − L+ L− an| ≤ |a2n − L|+ |L− an| <
ϵ

2
+

ϵ

2
= ϵ

for all sufficiently large n.
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(b) Give an example of (an) that diverges such that (bn) diverges.

Let an := n, which implies bn = n. It therefore suffices to prove that (an) diverges. For any
L ∈ R, the Archimedean property implies the existence of N > L+ 1, which means that for
all n > N we have |an − L| > 1. Thus an cannot converge to L.

(c) Give an example of (an) that diverges such that (bn) converges.

The sequence (an) from problem (2) does the trick, since

bn =

{
0 if n = 2k

− 1
2n otherwise.

Thus bn → 0, since for any ϵ > 0 we have |bn| < ϵ for all n > 1
ϵ .

(6) Consider the sequence an := n+ (−1)n

n . Does (an) converge? Justify your answer with a proof.

Claim. (an) diverges.

Proof. Note that an ≥ n− 1 for every n ∈ Zpos. For any L ∈ R, the Archimedean property
implies the existence of N > L+2, whence for every n > N we have an ≥ n−1 > N −1 > L
so

|an − L| = an − L > (N − 1)− L > 1.

Thus an cannot converge to L. Since L was arbitrary, we conclude that an diverges.
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