Instructor: Leo Goldmakher

Williams College
Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Solution Set 7

(1) Checking some fundamentals...

(a) Is co € R? Carefully formulate what properties you’d like such a number to have, and then prove
that it is or isn’t an element of R.

Whichever reasonable properties you might require of oo, it cannot live in R. For example,
you might expect oo + 1 = oo; this would contradict trichotomy, since we know 1 > 0. Or
you might wish co > z for all z € R; this would contradict the Archimedean property. If
you come up with a property you feel oo should have that doesn’t contradict anything we
know about R, please let me know!

(b) Suppose |z| < € for every € > 0. Prove that x = 0.

Suppose |z| < € for every positive e. In particular, |z| < % for every n € Zpos. If © # 0, then

we’d have n < ﬁ for every n € Zpos, contradicting the Archimedean property.

(c) Use (b) to prove that 0.9 = 1, where 0.9 denotes the number 0.9999 - - - written in decimal notation.

Set # :=1—0.9. Clearly > 0, so |z| = z. Given ¢ > 0, Archimedean Property yields a
positive integer n > % Induction implies 10™ > n, from which it follows that

1 1
|z =2 <0.00---01l=— < —<e
H/—/ 1071/ n

n—1

Since € > 0 was arbitrary, (b) implies « = 0.

(d) Prove that there does not exist a smallest positive real number.

Suppose « were a smallest positive real number. Then 0 < « < ¢ for all ¢ > 0. Part (b)
implies @ = 0, a contradiction.

10.3 Prove lim nL =0.

Proof. Fix € > 0. For every n > % we have

1 _ 1 1
n+2 70‘ T n+2 S n <€ O

COMMENTS. Note that we didn’t use the bound n > ﬁ, because this causes problems if

e < 2!
10.5 Prove lim o =1.
n—oo
Proof. Fix € > 0. For every n > 12 we have nLH—l‘:%<§<e. O

COMMENTS. Why %7 Because in analysis, we're never trying to optimize... we just need a
bound that’s good enough.




10.7 Prove that lim ﬁ%)n =0.
n—oo

=1 <e ]

n

Proof. Fix € > 0. Then for all n > % we have ’% — O‘ = ‘%

10.12 Suppose lim a, = L. Prove that lim |a,| = |L|.
n— oo n—0o0

We first prove a helpful consequence of the triangle inequality:
Lemma 1. |z —y| > ‘|x| - \y|’

Proof. The triangle inequality implies |z —y|+ |y| > |x|, whence |x —y| > |z| — |y|. Switching
the roles of # and y, this implies |y — x| > |y| — |z|. Since |z —y| = |y — z|, we deduce that

|z —y| > |z| = |y| and |z —y| > |y| - |z],

Since ]m — |y|| is either |z| — |y| or [y| — |z|, we conclude that |z — y| > ||:c\ . |y|’. 0

Claim. a, = L = |a,| —|L].

Proof. Given ¢ > 0. We know there exists N such that |a,, — L| < ¢ whenever n > N. The
lemma implies

lan = L1 2 [[an| = |1

Thus Vn > N we have
[lan] = |LI| < lan — L] < c. O

(2) Consider the sequence

{1 if n = 2% for some k € Zpos
Ay =

1 .
- otherwise,

1111111

so the sequence begins 1,1, 5,1, %, 5,%,1,5,... Does (a,) converge? Justify your answer with a proof.

We start with two lemmas that will be useful later.
Lemma 2. For any N, there exists m € Zyos such that 2™ > N.

Proof. By induction, 2¥ > k for all k € Zpos. Archimedean property implies the existence of
m > N. Thus 2™ > N. O

Lemma 3. For any N, there exists m > N such that m # 2% for any k € Lipos-

Proof. Pick any N. By Lemma 2, there exists £ € Zpos such that 2¢ > N. I claim that 2¢+1
cannot be a power of 2. Indeed, observe that 2¢t1 — 2¢ = 2¢ > 2 whence

26 <2t 41 <28 42 <2t
It follows that
m<t — 2m<2t <21 and m>0+1 = 2m >0t S ol 1 1

There are no positive integers between £ and £+ 1, whence 2¢ +1 # 2™ for any m € Zipos. 0O

continued on next page...




Claim. (a,) diverges.
Proof. Suppose the sequence converged, say, a,, — L. Then there exists N such that

1
n— L] < —
lan = L1 < 155

for all n > N. Note that we may safely assume that N > 1. By Lemma 2 (see below), there

exists an integer larger than N that’s a power of 2, whence

1
1-L] < —.
| | 100

By Lemma 3 (see below), there exists some integer £ > N that’s not a power of 2, whence

1 1
S ool< =,
‘k ‘ = 100
Since k > 2, we have

1

1 1 1
<[l—Z|=1—-L4+L-Z|<—-L|+|5-L|<=.

N | =

This contradiction implies that (a,) cannot converge. O

(3) Suppose (a,) and (b,) are convergent sequences and a,, < by, for all n € Z,,s. Does it follow that

lim a, < lim b,? Either prove this, or provide a counterexample.
n— oo n—oo

No, the limits might be equal. For example,

lim (11> = lim 1
n— oo n n—o00

(4) We call a sequence (z,) bounded iff the set {z, : n € Zyos} is bounded. Show (by example) that it’s
possible to have a bounded sequence (a,) and a convergent sequence (b,) such that both (a, + b,) and
(anby) diverge.

‘ There are many examples, e.g. a, = (—1)" and b, = 1. ‘

(5) Given a sequence (ay,), set b, := ag, — ayp.

(a) Suppose (a,) converges. Must (b,) converge? Justify your answer with a proof based on the
definition of limit (i.e. without using theorems about limits).

Claim. lim b, =0.
n—oo

Proof. Given € > 0. Since (a,) converges, say to L, then |a, — L| < § for all sufficiently
large n. It follows that

€ €
‘bn‘:‘a2n_an|:|a2n_L+L_an|§|a2n_L‘+|L_an|<§+§:€

for all sufficiently large n. O




(b) Give an example of (a,) that diverges such that (b,,) diverges.

Let a,, := n, which implies b,, = n. It therefore suffices to prove that (a,) diverges. For any
L € R, the Archimedean property implies the existence of N > L + 1, which means that for
all n > N we have |a, — L| > 1. Thus a,, cannot converge to L.

(¢) Give an example of (a,,) that diverges such that (b,) converges.

The sequence (a,) from problem (2) does the trick, since

bn:{o if n = 2k

— % otherwise.
n

Thus b, — 0, since for any e > 0 we have |b,| < € for all n > L.

(6) Consider the sequence a,, :=n + % Does (ay,) converge? Justify your answer with a proof.

Claim. (a,) diverges.

Proof. Note that a,, > n — 1 for every n € Zyos. For any L € R, the Archimedean property
implies the existence of N > L+ 2, whence for every n > N we havea,, >n—1> N—-1> L
SO

la, — Ll =a, —L>(N—-1)—L>1.

Thus a, cannot converge to L. Since L was arbitrary, we conclude that a, diverges. ]




