Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Solution Set 7

- (1) Checking some fundamentals...
 - (a) Is $\infty \in \mathbb{R}$? Carefully formulate what properties you'd like such a number to have, and then prove that it is or isn't an element of \mathbb{R} .

Whichever reasonable properties you might require of ∞ , it cannot live in \mathbb{R} . For example, you might expect $\infty + 1 = \infty$; this would contradict trichotomy, since we know 1 > 0. Or you might wish $\infty > x$ for all $x \in \mathbb{R}$; this would contradict the Archimedean property. If you come up with a property you feel ∞ should have that *doesn't* contradict anything we know about \mathbb{R} , please let me know!

(b) Suppose $|x| \leq \epsilon$ for every $\epsilon > 0$. Prove that x = 0.

Suppose $|x| \leq \epsilon$ for every positive ϵ . In particular, $|x| \leq \frac{1}{n}$ for every $n \in \mathbb{Z}_{pos}$. If $x \neq 0$, then we'd have $n \leq \frac{1}{|x|}$ for every $n \in \mathbb{Z}_{pos}$, contradicting the Archimedean property.

(c) Use (b) to prove that $0.\overline{9} = 1$, where $0.\overline{9}$ denotes the number $0.9999\cdots$ written in decimal notation.

Set $x := 1 - 0.\overline{9}$. Clearly $x \ge 0$, so |x| = x. Given $\epsilon > 0$, Archimedean Property yields a positive integer $n > \frac{1}{\epsilon}$. Induction implies $10^n > n$, from which it follows that

$$|x| = x < 0. \underbrace{00\cdots0}_{n-1} 1 = \frac{1}{10^n} < \frac{1}{n} < \epsilon.$$

Since $\epsilon > 0$ was arbitrary, (b) implies x = 0.

(d) Prove that there does not exist a smallest positive real number.

Suppose α were a smallest positive real number. Then $0 < \alpha \leq \epsilon$ for all $\epsilon > 0$. Part (b) implies $\alpha = 0$, a contradiction.

10.3 Prove $\lim_{n \to \infty} \frac{1}{n+2} = 0.$

Proof. Fix
$$\epsilon > 0$$
. For every $n > \frac{1}{\epsilon}$ we have $\left| \frac{1}{n+2} - 0 \right| = \frac{1}{n+2} \le \frac{1}{n} < \epsilon$.

COMMENTS. Note that we didn't use the bound $n > \frac{1}{\epsilon - 2}$, because this causes problems if $\epsilon \leq 2!$

10.5 Prove $\lim_{n \to \infty} \frac{n}{n+2} = 1$.

Proof. Fix
$$\epsilon > 0$$
. For every $n > \frac{10}{\epsilon}$ we have $\left| \frac{n}{n+2} - 1 \right| = \frac{2}{n} < \frac{\epsilon}{5} < \epsilon$.

COMMENTS. Why $\frac{10}{\epsilon}$? Because in analysis, we're never trying to optimize... we just need a bound that's good enough.

10.7 Prove that $\lim_{n\to\infty} \frac{(-1)^n}{n} = 0.$

Proof. Fix
$$\epsilon > 0$$
. Then for all $n > \frac{1}{\epsilon}$ we have $\left| \frac{(-1)^n}{n} - 0 \right| = \left| \frac{(-1)^n}{n} \right| = \frac{1}{n} < \epsilon$.

10.12 Suppose $\lim_{n\to\infty} a_n = L$. Prove that $\lim_{n\to\infty} |a_n| = |L|$.

We first prove a helpful consequence of the triangle inequality: Lemma 1. $|x - y| \ge ||x| - |y||$. Proof. The triangle inequality implies $|x - y| + |y| \ge |x|$, whence $|x - y| \ge |x| - |y|$. Switching the roles of x and y, this implies $|y - x| \ge |y| - |x|$. Since |x - y| = |y - x|, we deduce that $|x - y| \ge |x| - |y|$ and $|x - y| \ge |y| - |x|$, Since ||x| - |y|| is either |x| - |y| or |y| - |x|, we conclude that $|x - y| \ge ||x| - |y||$. \Box Claim. $a_n \to L \implies |a_n| \to |L|$. Proof. Given $\epsilon > 0$. We know there exists N such that $|a_n - L| < \epsilon$ whenever n > N. The lemma implies $|a_n - L| \ge ||a_n| - |L||$. Thus $\forall n > N$ we have $||a_n| - |L|| \le |a_n - L| < \epsilon$.

(2) Consider the sequence

$$a_n := \begin{cases} 1 & \text{if } n = 2^k \text{ for some } k \in \mathbb{Z}_{\text{pos}} \\ \frac{1}{n} & \text{otherwise,} \end{cases}$$

so the sequence begins $1, 1, \frac{1}{3}, 1, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, 1, \frac{1}{9}, \dots$ Does (a_n) converge? Justify your answer with a proof.

We start with two lemmas that will be useful later.

Lemma 2. For any N, there exists $m \in \mathbb{Z}_{pos}$ such that $2^m > N$.

Proof. By induction, $2^k > k$ for all $k \in \mathbb{Z}_{pos}$. Archimedean property implies the existence of m > N. Thus $2^m > N$.

Lemma 3. For any N, there exists m > N such that $m \neq 2^k$ for any $k \in \mathbb{Z}_{pos}$.

Proof. Pick any N. By Lemma 2, there exists $\ell \in \mathbb{Z}_{pos}$ such that $2^{\ell} > N$. I claim that $2^{\ell} + 1$ cannot be a power of 2. Indeed, observe that $2^{\ell+1} - 2^{\ell} = 2^{\ell} \ge 2$, whence

$$2^{\ell} < 2^{\ell} + 1 < 2^{\ell} + 2 \le 2^{\ell+1}.$$

It follows that

 $m \leq \ell \implies 2^m \leq 2^\ell < 2^\ell + 1$ and $m \geq \ell + 1 \implies 2^m \geq 2^{\ell+1} > 2^\ell + 1$. There are no positive integers between ℓ and $\ell+1$, whence $2^\ell + 1 \neq 2^m$ for any $m \in \mathbb{Z}_{pos}$. \Box *continued on next page...* Claim. (a_n) diverges.

Proof. Suppose the sequence converged, say, $a_n \to L$. Then there exists N such that

$$|a_n - L| < \frac{1}{100}$$

for all n > N. Note that we may safely assume that $N \ge 1$. By Lemma 2 (see below), there exists an integer larger than N that's a power of 2, whence

$$|1 - L| < \frac{1}{100}.$$

By Lemma 3 (see below), there exists some integer k > N that's not a power of 2, whence

$$\left|\frac{1}{k} - L\right| < \frac{1}{100}.$$

Since $k \geq 2$, we have

$$\frac{1}{2} \le \left| 1 - \frac{1}{k} \right| = \left| 1 - L + L - \frac{1}{k} \right| \le \left| 1 - L \right| + \left| \frac{1}{k} - L \right| < \frac{1}{50}.$$

This contradiction implies that (a_n) cannot converge.

(3) Suppose (a_n) and (b_n) are convergent sequences and $a_n < b_n$ for all $n \in \mathbb{Z}_{pos}$. Does it follow that $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$? Either prove this, or provide a counterexample.

No, the limits might be equal. For example,

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = \lim_{n \to \infty} 1$$

(4) We call a sequence (x_n) bounded iff the set $\{x_n : n \in \mathbb{Z}_{pos}\}$ is bounded. Show (by example) that it's possible to have a bounded sequence (a_n) and a convergent sequence (b_n) such that both $(a_n + b_n)$ and $(a_n b_n)$ diverge.

There are many examples, e.g. $a_n = (-1)^n$ and $b_n = 1$.

- (5) Given a sequence (a_n) , set $b_n := a_{2n} a_n$.
 - (a) Suppose (a_n) converges. Must (b_n) converge? Justify your answer with a proof based on the definition of limit (i.e. without using theorems about limits).

Claim. $\lim_{n \to \infty} b_n = 0.$ Proof. Given $\epsilon > 0$. Since (a_n) converges, say to L, then $|a_n - L| < \frac{\epsilon}{2}$ for all sufficiently large n. It follows that $|b_n| = |a_{2n} - a_n| = |a_{2n} - L + L - a_n| \le |a_{2n} - L| + |L - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ for all sufficiently large n. (b) Give an example of (a_n) that diverges such that (b_n) diverges.

Let $a_n := n$, which implies $b_n = n$. It therefore suffices to prove that (a_n) diverges. For any $L \in \mathbb{R}$, the Archimedean property implies the existence of N > L + 1, which means that for all n > N we have $|a_n - L| > 1$. Thus a_n cannot converge to L.

(c) Give an example of (a_n) that diverges such that (b_n) converges.

The sequence (a_n) from problem (2) does the trick, since $b_n = \begin{cases} 0 & \text{if } n = 2^k \\ -\frac{1}{2n} & \text{otherwise.} \end{cases}$ Thus $b_n \to 0$, since for any $\epsilon > 0$ we have $|b_n| < \epsilon$ for all $n > \frac{1}{\epsilon}$.

(6) Consider the sequence $a_n := n + \frac{(-1)^n}{n}$. Does (a_n) converge? Justify your answer with a proof.

Claim. (a_n) diverges.

Proof. Note that $a_n \ge n-1$ for every $n \in \mathbb{Z}_{pos}$. For any $L \in \mathbb{R}$, the Archimedean property implies the existence of N > L+2, whence for every n > N we have $a_n \ge n-1 > N-1 > L$ so

 $|a_n - L| = a_n - L > (N - 1) - L > 1.$

Thus a_n cannot converge to L. Since L was arbitrary, we conclude that a_n diverges.