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(1) Determine (with proof) lim
n→∞

√
n+ 3−

√
n.

We have

0 ≤
√
n+ 3−

√
n =

√
n+ 3 +

√
n√

n+ 3 +
√
n
· (
√
n+ 3−

√
n) =

3√
n+ 3 +

√
n
≤ 3√

n

A straightforward proof shows that 3√
n
→ 0. Thus by Squeeze Theorem,

√
n+ 3−

√
n → 0.

Notes. Note that to apply the squeeze theorem, you need to explicitly state a sequence
that bounds the given one below.

(2) Compute lim
n→∞

n
√
2. Do not use Theorem 16.4. [Hint. Start by proving that

(
1 + 1

n

)n ≥ 2.]

By the binomial theorem, we have(
1 +

1

n

)n

≥ 1 +

(
n

1

)
1

n
= 2.

Thus, 21/n ≤ 1 + 1
n . On the other hand, 21/n ≥ 1 for all n, since

(21/n − 1)(2(n−1)/n + 2(n−2)/n + · · ·+ 21/n + 1) = 2− 1 > 0.

It follows that 1 ≤ 21/n ≤ 1 + 1
n , and we conclude the claim by the squeeze theorem.

(3) Compute lim
n→∞

n

√
1 + n

n+1 . [Hint. Squeeze theorem! ]

We have

1 ≤
(
1 +

n

n+ 1

)1/n

≤ 21/n.

The squeeze theorem implies

lim
n→∞

(
1 +

n

n+ 1

)1/n

= 1.



(4) Suppose a1 > 1, and let an+1 = 2 − 1/an for each positive integer n. Prove that (an) converges, and
(rigorously) find its limit.

Claim. an → 1

Proof. Our first step is to find a non-recursive formula for an:

Lemma. For any n ∈ Z>0 we have 1
an−1 = n− 1 + 1

a1−1 .

(The proof, by induction, is given below.) By the algebra of limits, we deduce

lim
n→∞

(an − 1) = lim
n→∞

1

n− 1

(
a1 − 1

a1 − 1 + 1
n−1

)
=

(
lim
n→∞

1

n− 1

) a1 − 1

a1 − 1 + lim
n→∞

1
n−1

 = 0.

Again from the algebra of limits, we deduce lim
n→∞

an = 1.

Proof of Lemma. We prove this by induction. The base case n = 1 is trivial to verify, so it
suffices to check the inductive step. We have

1

an+1 − 1
=

1

1− 1
an

=
an

an − 1
= 1 +

1

an − 1
,

so if the claim holds for an then it must also hold for an+1.

(5) Suppose 0 < a1 < b1 and for each positive integer n define

an+1 :=
√

anbn bn+1 :=
an + bn

2

(a) Prove that both sequences (an) and (bn) converge.

In words, an+1 is defined to be the arithmetic mean of an and bn, while bn+1 is defined to
be the geometric mean of an and bn. Our first observation is that the geometric mean never
exceeds the arithmetic mean:

Lemma. For any x, y > 0 we have
√
xy ≤ x+ y

2

Proof. We know that (x− y)2 ≥ 0. A bit of algebraic manipulation implies (x+ y)2 ≥ 4xy,
which yields the claim.

The Lemma implies

(1) an ≤ bn ∀n.

It follows that for every n,

(2) an+1 =
√

anbn ≥ an and bn+1 =
an + bn

2
≤ bn.

Putting equations (1) and (2) together, we conclude that

a1 ≤ a2 ≤ · · · ≤ an ≤ bn ≤ bn−1 ≤ · · · ≤ b1

for any n. This shows an is bounded above by b1 and below by a1, and that it’s monotonically
increasing. By the MCT, (an) converges. Similarly, (bn) converges.
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(b) Prove that lim
n→∞

an = lim
n→∞

bn.

From above we know both sequences converge; say an → A and bn → B. Since bn+1 = an+bn
2 ,

taking the limit on both sides and using the algebra of limits implies B = A+B
2 . So A = B.

(6) Consider the following two sequences:

(an) :
√
2,

√
2
√
2,

√
2

√
2
√
2, · · ·

(bn) :
√
2,

√
2 +

√
2,

√
2 +

√
2 +

√
2, · · ·

More formally, we can define a1 = b1 =
√
2 and for each positive integer n set

an+1 :=
√
2an and bn+1 :=

√
2 + bn.

Finally, we define a third sequence:

cn :=
2n

b1b2 · · · bn

(a) Prove that (an) converges, and make a conjecture about what it converges to. (You don’t have to
prove your conjecture, but you should try to explain where it comes from.)

Observe that if 0 < x < 2 then x <
√
2x < 2. By induction, it follows that our sequence (an)

is monotonically increasing and bounded by 2. By the Monotone Convergence Theorem
(MCT), it must converge.

Non-rigorously, we can guess the sequence converges to 2. Here’s one way to make this guess:

if α =

√
2

√
2
√
2
√
· · · then α =

√
2α, whence α = 2.

(b) Prove that (bn) converges, and make a conjecture about what it converges to. (You don’t have to
prove your conjecture, but you should try to explain where it comes from.)

Observe that
1 < x < 2 =⇒ x <

√
2 + x < 2.

By induction, it follows that our sequence (bn) is monotonically increasing and bounded by
2. By the Monotone Convergence Theorem (MCT), it must converge.

Non-rigorously, we can guess the sequence converges to 2. Here’s one way to make this guess:

if β =

√
2 +

√
2 +

√
2 +

√
· · · then β =

√
2 + β, whence β = 2.
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(c) Prove that (cn) converges, and make a conjecture about what it converges to. (You don’t have to
prove your conjecture, but you should try to explain where it comes from.)

Observe that cn+1 = cn · 2
bn+1

. Since bk ≤ 2 for all k, we deduce that cn+1 ≥ cn for every n,

so (cn) is monotone increasing. If we can show that (cn) is bounded, the MCT will tell us
that (cn) must converge.

I claim that cn ≤ 2 for all n. Note that, directly from the definition, finding an upper bound
on cn is equivalent to finding a lower bound on b1b2 · · · bn. This product is quite compli-
cated, but the analogous product a1a2 · · · an is much easier to work out. This motivates the
following approach.

Lemma. bn ≥ an for all n.

Proof. By induction. The base case n = 1 clearly holds. From part (a) we know an ≤ 2 for
all n, whence bn+1 =

√
2 + bn ≥

√
an + bn ≥

√
2an = an+1.

This allows us to translate the problem from getting a lower bound on b1b2 · · · bn to getting
a lower bound on a1a2 · · · an. A straightforward induction proof produces an exact formula
for this product:

Proposition. We have a1a2 · · · an = 2s(n) where s(n) :=

n−1∑
k=0

n− k

2k+1
.

It now suffices to get a lower bound on s(n). Some playing around might lead you to conclude

Lemma. s(n) = n− 1 + 1
2n .

Proof. This can be proved directly by some clever applications of the geometric series for-
mula, or by induction. I leave the details as an exercise.

Putting all our work together, we conclude that

cn =
2n

b1b2 · · · bn
≤ 2n

a1a2 · · · an
= 2n−s(n) < 2n−(n−1) = 2.

Since (cn) is monotone increasing and bounded above by 2, the MCT implies (cn) converges.
It turns out cn → π

2 ! Here’s a meta-analytic proof.

Lemma. For any n, sinx = 2n
(
sin x

2n

) (
cos x

2

) (
cos x

4

) (
cos x

8

)
· · ·
(
cos x

2n

)
.

Proof. This comes from iterating the formula sin 2x = 2 sinx cosx.

Corollary. sin x
x =

(
cos x

2

) (
cos x

4

) (
cos x

8

)
· · ·

Proof. By playing with the Taylor expansion of sinx, one can prove that lim
ℓ→∞

ℓ sin x
ℓ = x.

Plugging in x = π
2 and repeatedly applying the cosine half-angle formula cos 1

2x =
√

1+cos x
2

yields the claim.

Notes. Explicitly writing out the definition of cn, we deduce a cute formula for π using
only the number 2:

π = 2 · 2√
2
· 2√

2 +
√
2
· 2√

2 +
√
2 +

√
2

· · ·

Do other numbers have similar expansions?
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