Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Solution Set 8

(1) Determine (with proof) $\lim_{n \to \infty} \sqrt{n+3} - \sqrt{n}$.

We have

$$0 \le \sqrt{n+3} - \sqrt{n} = \frac{\sqrt{n+3} + \sqrt{n}}{\sqrt{n+3} + \sqrt{n}} \cdot (\sqrt{n+3} - \sqrt{n}) = \frac{3}{\sqrt{n+3} + \sqrt{n}} \le \frac{3}{\sqrt{n}}$$

A straightforward proof shows that $\frac{3}{\sqrt{n}} \to 0$. Thus by Squeeze Theorem, $\sqrt{n+3} - \sqrt{n} \to 0$.

NOTES. Note that to apply the squeeze theorem, you need to explicitly state a sequence that bounds the given one below.

(2) Compute $\lim_{n\to\infty} \sqrt[n]{2}$. Do not use Theorem 16.4. [*Hint. Start by proving that* $\left(1+\frac{1}{n}\right)^n \geq 2$.]

By the binomial theorem, we have

$$\left(1+\frac{1}{n}\right)^n \ge 1 + \binom{n}{1}\frac{1}{n} = 2.$$

Thus, $2^{1/n} \leq 1 + \frac{1}{n}$. On the other hand, $2^{1/n} \geq 1$ for all n, since

$$(2^{1/n} - 1)(2^{(n-1)/n} + 2^{(n-2)/n} + \dots + 2^{1/n} + 1) = 2 - 1 > 0.$$

It follows that $1 \le 2^{1/n} \le 1 + \frac{1}{n}$, and we conclude the claim by the squeeze theorem.

(3) Compute $\lim_{n \to \infty} \sqrt[n]{1 + \frac{n}{n+1}}$. [*Hint. Squeeze theorem!*]

We have

$$1 \le \left(1 + \frac{n}{n+1}\right)^{1/n} \le 2^{1/n}$$

The squeeze theorem implies

$$\lim_{n \to \infty} \left(1 + \frac{n}{n+1} \right)^{1/n} = 1.$$

(4) Suppose $a_1 > 1$, and let $a_{n+1} = 2 - 1/a_n$ for each positive integer n. Prove that (a_n) converges, and (rigorously) find its limit.

Claim.
$$a_n \to 1$$

Proof. Our first step is to find a non-recursive formula for a_n :
Lemma. For any $n \in \mathbb{Z}_{>0}$ we have $\frac{1}{a_n-1} = n-1 + \frac{1}{a_1-1}$.
(The proof, by induction, is given below.) By the algebra of limits, we deduce
 $\lim_{n\to\infty} (a_n-1) = \lim_{n\to\infty} \frac{1}{n-1} \left(\frac{a_1-1}{a_1-1+\frac{1}{n-1}} \right) = \left(\lim_{n\to\infty} \frac{1}{n-1} \right) \left(\frac{a_1-1}{a_1-1+\lim_{n\to\infty} \frac{1}{n-1}} \right) = 0.$
Again from the algebra of limits, we deduce $\lim_{n\to\infty} a_n = 1$.
Proof of Lemma. We prove this by induction. The base case $n = 1$ is trivial to verify, so it suffices to check the inductive step. We have
 $\frac{1}{a_{n+1}-1} = \frac{1}{1-\frac{1}{a_n}} = \frac{a_n}{a_n-1} = 1 + \frac{1}{a_n-1},$

so if the claim holds for a_n then it must also hold for a_{n+1} .

(5) Suppose $0 < a_1 < b_1$ and for each positive integer n define

$$a_{n+1} := \sqrt{a_n b_n} \qquad \qquad b_{n+1} := \frac{a_n + b_n}{2}$$

(a) Prove that both sequences (a_n) and (b_n) converge.

In words, a_{n+1} is defined to be the *arithmetic mean* of a_n and b_n , while b_{n+1} is defined to be the *geometric mean* of a_n and b_n . Our first observation is that the geometric mean never exceeds the arithmetic mean:

Lemma. For any x, y > 0 we have $\sqrt{xy} \le \frac{x+y}{2}$

Proof. We know that $(x - y)^2 \ge 0$. A bit of algebraic manipulation implies $(x + y)^2 \ge 4xy$, which yields the claim.

The Lemma implies

(1)
$$a_n \le b_n \quad \forall n$$

It follows that for every n,

(2)
$$a_{n+1} = \sqrt{a_n b_n} \ge a_n$$
 and $b_{n+1} = \frac{a_n + b_n}{2} \le b_n$.

Putting equations (1) and (2) together, we conclude that

$$a_1 \le a_2 \le \dots \le a_n \le b_n \le b_{n-1} \le \dots \le b_1$$

for any n. This shows a_n is bounded above by b_1 and below by a_1 , and that it's monotonically increasing. By the MCT, (a_n) converges. Similarly, (b_n) converges.

(b) Prove that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

From above we know both sequences converge; say $a_n \to A$ and $b_n \to B$. Since $b_{n+1} = \frac{a_n + b_n}{2}$, taking the limit on both sides and using the algebra of limits implies $B = \frac{A+B}{2}$. So A = B.

(6) Consider the following two sequences:

$$(a_n)$$
 : $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2}\sqrt{2}}, \cdots$
 (b_n) : $\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2}+\sqrt{2}}, \cdots$

More formally, we can define $a_1 = b_1 = \sqrt{2}$ and for each positive integer n set

$$a_{n+1} := \sqrt{2a_n}$$
 and $b_{n+1} := \sqrt{2+b_n}$.

Finally, we define a third sequence:

$$c_n := \frac{2^n}{b_1 b_2 \cdots b_n}$$

(a) Prove that (a_n) converges, and make a conjecture about what it converges to. (You don't have to prove your conjecture, but you should try to explain where it comes from.)

Observe that if 0 < x < 2 then $x < \sqrt{2x} < 2$. By induction, it follows that our sequence (a_n) is monotonically increasing and bounded by 2. By the Monotone Convergence Theorem (MCT), it must converge. Non-rigorously, we can guess the sequence converges to 2. Here's one way to make this guess: if $\alpha = \sqrt{2\sqrt{2\sqrt{2\sqrt{\cdots}}}}$ then $\alpha = \sqrt{2\alpha}$, whence $\alpha = 2$.

(b) Prove that (b_n) converges, and make a conjecture about what it converges to. (You don't have to prove your conjecture, but you should try to explain where it comes from.)

Observe that

 $1 < x < 2 \implies x < \sqrt{2+x} < 2.$

By induction, it follows that our sequence (b_n) is monotonically increasing and bounded by 2. By the Monotone Convergence Theorem (MCT), it must converge.

Non-rigorously, we can guess the sequence converges to 2. Here's one way to make this guess: if $\beta = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\cdots}}}}$ then $\beta = \sqrt{2 + \beta}$, whence $\beta = 2$.

(c) Prove that (c_n) converges, and make a conjecture about what it converges to. (You don't have to prove your conjecture, but you should try to explain where it comes from.)

Observe that $c_{n+1} = c_n \cdot \frac{2}{b_{n+1}}$. Since $b_k \leq 2$ for all k, we deduce that $c_{n+1} \geq c_n$ for every n, so (c_n) is monotone increasing. If we can show that (c_n) is bounded, the MCT will tell us that (c_n) must converge.

I claim that $c_n \leq 2$ for all n. Note that, directly from the definition, finding an upper bound on c_n is equivalent to finding a lower bound on $b_1b_2\cdots b_n$. This product is quite complicated, but the analogous product $a_1a_2\cdots a_n$ is much easier to work out. This motivates the following approach.

Lemma. $b_n \ge a_n$ for all n.

Proof. By induction. The base case n = 1 clearly holds. From part (a) we know $a_n \leq 2$ for all n, whence $b_{n+1} = \sqrt{2 + b_n} \geq \sqrt{a_n + b_n} \geq \sqrt{2a_n} = a_{n+1}$.

This allows us to translate the problem from getting a lower bound on $b_1b_2\cdots b_n$ to getting a lower bound on $a_1a_2\cdots a_n$. A straightforward induction proof produces an exact formula for this product:

Proposition. We have
$$a_1 a_2 \cdots a_n = 2^{s(n)}$$
 where $s(n) := \sum_{k=0}^{n-1} \frac{n-k}{2^{k+1}}$

It now suffices to get a lower bound on s(n). Some playing around might lead you to conclude **Lemma.** $s(n) = n - 1 + \frac{1}{2^n}$.

Proof. This can be proved directly by some clever applications of the geometric series formula, or by induction. I leave the details as an exercise. \Box

Putting all our work together, we conclude that

$$c_n = \frac{2^n}{b_1 b_2 \cdots b_n} \le \frac{2^n}{a_1 a_2 \cdots a_n} = 2^{n-s(n)} < 2^{n-(n-1)} = 2.$$

Since (c_n) is monotone increasing and bounded above by 2, the MCT implies (c_n) converges. It turns out $c_n \to \frac{\pi}{2}$! Here's a meta-analytic proof.

Lemma. For any n, $\sin x = 2^n \left(\sin \frac{x}{2^n} \right) \left(\cos \frac{x}{2} \right) \left(\cos \frac{x}{4} \right) \left(\cos \frac{x}{8} \right) \cdots \left(\cos \frac{x}{2^n} \right)$.

Proof. This comes from iterating the formula $\sin 2x = 2 \sin x \cos x$.

Corollary. $\frac{\sin x}{x} = (\cos \frac{x}{2}) (\cos \frac{x}{4}) (\cos \frac{x}{8}) \cdots$

Proof. By playing with the Taylor expansion of $\sin x$, one can prove that $\lim_{\ell \to \infty} \ell \sin \frac{x}{\ell} = x$.

Plugging in $x = \frac{\pi}{2}$ and repeatedly applying the cosine half-angle formula $\cos \frac{1}{2}x = \sqrt{\frac{1+\cos x}{2}}$ yields the claim.

NOTES. Explicitly writing out the definition of c_n , we deduce a cute formula for π using only the number 2:

$$\tau = 2 \cdot \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2+\sqrt{2}}} \cdot \frac{2}{\sqrt{2+\sqrt{2}+\sqrt{2}}} \cdots$$

Do other numbers have similar expansions?