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(1) In class, we outlined a proof of the Cauchy criterion which is similar to that given in Chapter 19 of
the book. The biggest difference between our proof and the book’s is the approach to the Bolzano-
Weierstrass theorem; our proof was based on Miles’ and Ben’s insight that any sequence has a monotone
subsequence, while the book’s proof is a clever binary search algorithm. The goal of this problem is to
make our approach rigorous. Given a sequence (an), we call ak a peak iff ak ≥ am for all m ≥ k.

(a) Suppose (an) has infinitely many peaks. Prove that (an) has a monotone subsequence.

By definition of peak, the subsequence consisting of the peaks forms a monotonically de-
creasing sequence.

(b) Suppose (an) has finitely many peaks. Prove that (an) has a monotone subsequence.

There exists some largest M such that aM is a peak. Let m1 = M + 1. Since am1
isn’t

a peak, there exists m2 > m1 such that am1
< am2

. Since am2
isn’t a peak, there exists

m3 > m2 such that am2
< am3

. Since there are no more peaks we can continue this process
indefinitely, thus creating a monotonically increasing subsequence (amk

).

(c) Deduce the Bolzano-Weierstrass theorem from the previous parts.

Given a bounded sequence (an), our work above demonstrates that it has a monotone sub-
sequence (ank

). Since (ank
) must be bounded, the Monotone Convergence Theorem implies

it must converge. Thus we’ve found a convergent subsequence of (an).

(2) For each of the following metrics on R2, draw a picture the open ball B3

(
(2, 0)

)
. No proofs necessary.

(a) The chessboard metric d(x, y) = max{|x1 − y1|, |x2 − y2|}.

x

y

(5, 3)

(5,−3)

(−1, 3)

(−1,−3)

(2, 0)

This open ball is the interior of a square of side length 6, centered at (2, 0), not including
any of the boundary.



(b) The British Rail metric

d(x, y) :=

{
|x|+ |y| if x ̸= y

0 otherwise.

(Here |x| denotes the Euclidean distance from x to the origin.)

x

y

(2, 0)

(0, 1)

This open ball is the single point (2, 0) union with the interior of the unit circle centered at
the origin (not including any of the boundary).

(c) The discrete metric d(x, y) =

{
1 if x ̸= y

0 if x = y.

By definition, d(x, y) ≤ 1 ∀x, y ∈ R2. Thus, the open ball is all of R2.

(3) Suppose (X, d) is a metric space and A ⊆ X. We say p ∈ X is an interior point of A iff ∃r > 0 such that
Br(p) ⊆ A, and that p ∈ X is a limit point of A iff there exists a sequence (an) of points in A such that
lim
n→∞

an = p. (As always, Br(p) denotes the ball of radius r around p.)

(a) Prove that A is open iff every point of A is an interior point of A. (In class we defined: A is open
iff ∂A ∩A = ∅.)

(⇒) Suppose A is open. Pick any a ∈ A. By hypothesis, a ̸∈ ∂A, so there is an ϵ > 0 such
that Bϵ(a) ⊆ A; in other words, a is an interior point of A. Thus every point of A is an
interior point.

(⇐) By definition, any interior point of A has a ball of some radius ϵ > 0 around it such that
the ball is entirely contained in A, which means an interior point cannot lie on ∂A. Thus, if
every point of A is an interior point, then no point of A is on the boundary of A. In other
words, A ∩ ∂A = ∅, whence A is open.
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(b) Prove that A is closed iff every limit point of A is in A. (In class we defined: A is closed iff ∂A ⊆ A.)

(⇒) Suppose A has a limit point p that is not in the set. Then for any ϵ > 0, the ball of
radius ϵ about p must contain a point in A, by definition of p being a limit point. But that
ball also contains p itself, which is in Ac. Thus the ball intersects both A and Ac, hence
p is on the boundary of A. Since A does not contain one of its boundary points, it is not
closed. Thus any closed set must contain all its limit points.

(⇐) Suppose A is not closed. Then there is some point b ∈ ∂A \ A. Since b is on the
boundary of A, for any ϵ > 0, the ball of radius ϵ about b intersects A. Let nϵ be a point
in the intersection of the ball of radius ϵ and A. Then the sequence n1, n1/2, n1/3, . . . is a
sequence in A converging to b, so b is a limit point of A. Thus A does not contain all its
limit points. Thus any set that contains all its limit points must be closed.

(4) Suppose (X, d) is a metric space. Prove that Br(p) is open for any p ∈ X and any r > 0.

Pick any q ∈ Br(p), and set ϵ := r − d(p, q).

Claim. Bϵ(q) ⊆ Br(p)

Proof. Pick x ∈ Bϵ(q). Then

d(x, p) ≤ d(x, q) + d(p, q) < ϵ+ d(p, q) = r.

Thus, we’ve shown that every point of Br(p) is interior; it follows that Br(p) is open.

(5) Decide (with proof or counterexample) whether each of the following is a metric space.

(a) The set {a, b, c, d} with the distance between any two of a, b, c being 2 and the distance between d
and any one of a, b, c being 1. (The distance between any element and itself is 0, of course.)

Call the distance function ϕ (just to avoid confusion with the point d). I claim ({a, b, c, d}︸ ︷︷ ︸
=:X

, ϕ)

is a metric space. Let’s look at a visual interpretation first.

a b

c

2

2 2

d

1 1

1

Ok, now let’s prove (X,ϕ) form a metric space. The first two properties are handed to
us for free, so it remains to show triangle inequality. Here’s a visual way to think about
triangle inequality. Triangle inequality is violated if there are two points p1, p2 ∈ X such
that the fastest way to get from p1 to p2 is not by directly taking the path from p1 to p2. For
example, let’s choose a, d ∈ X. There are many ways to get from a to d. You can go from
a → c → b → d, but that takes distance 2 + 2 + 1, whereas it’s faster to go just from a → d
(takes distance 1). By inspection, there are no two points that break triangle inequality,
hence (X,ϕ) is a metric space.
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(b) R∞ := {(an) : (an) is a sequence of real numbers}, with respect to d(x, y) := max{|xn − yn|}.
This isn’t well-defined: the sequences xn = 0 and yn = n would get infinitely far apart under
this metric, but the codomain of any metric must be R and ∞ ̸∈ R!

(c) F := {A ⊆ Z : A is finite and nonempty}, with respect to d(X,Y ) := log |X−Y |√
|X|

√
|Y |

. Here |S| denotes
the size of S and X − Y := {x− y : x ∈ X, y ∈ Y }.
No, this is not a metric, because d(A,A) might be nonzero. For example, let A := {2, 3}.
Then A−A = {0,±1}, so d(A,A) = log 3

2 ̸= 0.

Notes.Remarkably, this function (called the Ruzsa distance) satisfies all the other proper-
ties, including the triangle inequality.

(6) Exploring metrics on R2.

(a) Prove that the Euclidean metric on R2 is, in fact, a metric.

By definition,
d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2.

This equals 0 iff both (x1 − y1)
2, (x2 − y2)

2 = 0, which happens iff x1 = y1 and x2 = y2. It’s
also clear that this metric is symmetric: d(x, y) = d(y, x). It remains to prove the triangle
inequality.

The most direct approach is quite algebraically involved. However, we can simplify this
significantly by observing that the Euclidean distance is translation invariant, i.e. that
d(x, y) = d(x − z, y − z) for any z. After translating appropriately, we see that triangle
inequality is equivalent to showing that

d(x, y) ≤ d(x, 0) + d(0, y) (∗)

for all x, y.

Note that (x1y2 − x2y1)
2 ≥ 0. It follows that

(x1y1 + x2y2)
2 ≤ (x2

1 + x2
2)(y

2
1 + y22). (†)

In particular,

−x1y1 − x2y2 ≤
√
(x2

1 + x2
2)(y

2
1 + y22).

From here, it’s straightforward to deduce√
(x1 − y1)2 + (x2 − y2)2 ≤

√
x2
1 + x2

2 +
√
y21 + y22

which is precisely (∗).

Notes. One nice interpretation of (†) is in the language of linear algebra:

x⃗ · y⃗ ≤ |x⃗| · |y⃗|

where the left hand side is the dot product, while the right hand side is ordinary multiplica-
tion on R.

continued on next page...
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Notes. Above, we saw that (†) implies (∗); it turns out that the converse implication holds
as well, so the inequality (†) is equivalent to the triangle inequality for the Euclidean metric
on R2. Similarly, it turns out the triangle inequality for the Euclidean metric on Rn is
equivalent to the following:

Lemma (Cauchy-Schwarz inequality). For any real numbers ai, bi, we have(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)

(or equivalently, a⃗ · b⃗ ≤ |⃗a| · |⃗b|).

(b) Suppose O is a subset of R2 that’s open with respect to the Euclidean metric. Must it also be open
with respect to the taxicab metric?

Suppose O ⊆ R2 is open with respect to the Euclidean metric. Pick any α ∈ O; we claim
that α is in the interior of O with respect to the taxicab metric. Since O is open with
respect to the Euclidean metric, ∃δ > 0 such that the open euclidean ball of radius δ around
α is entirely contained inside O.

Consider the open taxicab ball of radius δ around α. Pick any x in this ball; by definition,
the taxicab distance between x and α is smaller than δ, i.e.

|x1 − α1|+ |x2 − α2| < δ.

Squaring both sides, we deduce

|x1 − α1|2 + |x2 − α2|2 ≤ |x1 − α1|2 + |x2 − α2|2 + 2|x1 − α1| · |x2 − α2| < δ2.

This implies that x lies in the Euclidean ball of radius δ around α, which we know is entirely
contained in O. We’ve therefore shown that every point in the taxicab ball of radius δ around
α is contained entirely in O; it follows that α is an interior point of O with respect to the
taxicab metric, as desired.

Notes. All this becomes much more clear when looking at pictures: the taxicab open ball
is the largest diamond that fits inside the Euclidean ball of the same radius.

(c) The Euclidean and taxicab metrics on R2 both have the form

dp(x, y) :=
(
|x1 − y1|p + |x2 − y2|p

)1/p
(d1 is the taxicab metric, d2 is the Euclidean metric). It turns out that dp is a metric for every
real number p ≥ 1. (Don’t worry about proving it here, although it is a fun challenge to think
about when you have some spare time.) Can you describe any of the other metrics on R2 that we’ve
encountered (chessboard, British Rail, and discrete) in terms of dp? No formal proofs necessary, but
give a bit of justification for your answer.
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This is open ended, of course, but the cleanest answers are those that describe the metric in
terms of dp without reference to specific inputs.

Claim. The chessboard metric is d∞ := lim
p→∞

dp.

Proof. If x = y then dp(x, y) = 0 for all p, so the limit is also 0. If x ̸= y, then without loss
of generality we have

max{|x1 − y1|, |x2 − y2|} = |x1 − y1| > 0.

Then

dp(x, y) = |x1 − y1|
(
1 +

(
|x2 − y2|
|x1 − y1|

)p)1/p

.

Since this is bounded above by |x1 − y1| · 21/p and bounded below by |x1 − y1|, we see
dp(x, y) → |x1 − y1| as p → ∞.

We can also express the discrete metric in terms of dp (albeit in a more artificial form) as
min{⌈d2⌉, 1}.

Notes.The metric dp is called the ℓp metric; you will explore it in virtually any advanced
course on analysis.

(7) Given a metric space (X, d) where X has at least 3 elements. Prove that there exists a metric on X
that’s not a scalar multiple of d or of the discrete metric.

Observe that rescaling a metric doesn’t affect its metric properties. Also, it’s easy to
see that summing any two metrics produces a metric. Thus, any linear combination
D(x, y) := αd1(x, y) + βd2(x, y) of any two metrics d1, d2 is a metric as well. In particular,
if the given metric d isn’t the discrete metric, then the sum of d and the discrete metric
produces a new metric on X.

However, if d is the discrete metric, then we haven’t solved the problem, since in this case
the sum of d and the discrete metric would be a scalar multiple of d! So in this case, we
have to do something more clever. There are many approaches to this; here’s one.

Given a metric d, set D(x, y) := d(x,y)
1+d(x,y) . I claim that D is a metric. It’s easy to verify the

first two properties, so it suffices to handle the triangle inequality:

D(x, z) = 1− 1

1 + d(x, z)
≤ 1− 1

1 + d(x, y) + d(y, z)
=

d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)
= D(x, y) +D(y, z).

It’s an exercise to check that D ̸= d and also cannot equal the discrete metric.
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(8) Given (X, d) a metric space and A ⊆ X. Prove that A is closed iff Ac is open.

We warm up with the following useful observation:

Lemma. For any set A ⊆ X, we have ∂A = ∂Ac.

Proof. Let x ∈ ∂A. Then by the definition of a boundary point of A, for any ϵ > 0, we
have Bϵ(x) ∩ A ̸= ∅ and Bϵ(x) ∩ Ac ̸= ∅. Since (Ac)c = A, we can just as well write that
Bϵ(x) ∩ Ac ̸= ∅ and Bϵ(x) ∩ (Ac)c ̸= ∅. But this is exactly the definition for x to be in
the boundary of Ac. Thus ∂A ⊆ ∂Ac. Replacing A with Ac, we have that ∂Ac ⊆ ∂(Ac)c.
Again, (Ac)c = A, so that means ∂Ac ⊆ ∂A. We now have subsets in both directions, so we
conclude ∂A = ∂Ac.

Now we turn to the given problem. Suppose A is open. Then ∂A ∩ A = ∅ by definition
of being an open set. That means all of ∂A is in Ac. Since ∂A = ∂Ac by our lemma, we
have that Ac contains all of its own boundary, hence it is closed. Now suppose A is closed.
Then it contains all of its boundary, so Ac contains none of the shared boundary, hence
Ac ∩ ∂Ac = ∅ and Ac is open.

Notes. Note that most sets that you encounter in the wild are neither open nor closed!

(*) (Optional challenge problem—won’t be graded) Let Mn×n denote the space of all n×n matrices with real
entries. Prove that d(x, y) := rank(x− y) is a metric on Mn×n.

Left to the interested reader to tackle over winter break.
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