
Instructor: Leo Goldmakher

Williams College
Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Solution Set 9

(1) In class, we outlined a proof of the Cauchy criterion that is similar to that given in Chapter 19 of the
book. The biggest difference between our proof and the book’s is our appeal to

Lily’s conjecture: Any sequence has a monotone subsequence.

(By contrast, the book’s proof relies on a clever binary search algorithm.) The goal of this problem is to
prove Lily’s conjecture. Given a sequence (an), we call ak a peak iff ak ≥ am for all m ≥ k.

(a) Suppose (an) has infinitely many peaks. Prove that (an) has a monotone subsequence.

By definition of peak, the subsequence consisting of the peaks forms a monotonically de-
creasing sequence.

(b) Suppose (an) has finitely many peaks. Prove that (an) has a monotone subsequence.

There exists some largest M such that aM is a peak. Let m1 = M + 1. Since am1 isn’t
a peak, there exists m2 > m1 such that am1

< am2
. Since am2

isn’t a peak, there exists
m3 > m2 such that am2

< am3
. Since there are no more peaks we can continue this process

indefinitely, thus creating a monotonically increasing subsequence (amk
).

(2) In our proof of Cauchy’s criterion, we asserted (without proof) that any Cauchy sequence is bounded.
Prove this.

Given a Cauchy sequence (an), we know there exists N such that |am − an| < 1 for all
m,n > N . Fix some M > N , and set a := aM . Then a − 1 < an < a + 1 for all n > N ,
hence is bounded for all such n. Since the set {an : n ≤ N} is finite, it’s bounded as well.
Thus the set {an} = {an : n ≤ N} ∪ {an : n > N} must be bounded as well.

(3) Suppose 0 < a1 < b1 and for each positive integer n define

an+1 :=
√

anbn bn+1 :=
an + bn

2

(a) Prove that both sequences (an) and (bn) converge.

In words, an+1 is defined to be the arithmetic mean of an and bn, while bn+1 is defined to
be the geometric mean of an and bn. Our first observation is that the geometric mean never
exceeds the arithmetic mean:

Lemma 1. For any x, y > 0 we have
√
xy ≤ x+ y

2

Proof. We know that (x− y)2 ≥ 0. A bit of algebraic manipulation implies (x+ y)2 ≥ 4xy,
which yields the claim.
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The Lemma implies

(1) an ≤ bn ∀n.

It follows that for every n,

(2) an+1 =
√

anbn ≥ an and bn+1 =
an + bn

2
≤ bn.

Putting equations (1) and (2) together, we conclude that

a1 ≤ a2 ≤ · · · ≤ an ≤ bn ≤ bn−1 ≤ · · · ≤ b1

for any n. This shows an is bounded above by b1 and below by a1, and that it’s monotonically
increasing. By the MCT, (an) converges. Similarly, (bn) converges.

(b) Prove that lim
n→∞

an = lim
n→∞

bn.

From above we know both sequences converge; say an → A and bn → B. Since bn+1 = an+bn
2 ,

taking the limit on both sides and using the algebra of limits implies B = A+B
2 . So A = B.

(4) Let 0 ≤ α < 1, and let f : R → R be a function that satisfies |f(x) − f(y)| ≤ α|x − y| for all x, y ∈ R.
Pick a1 ∈ R, and set an+1 := f(an) for all n ∈ Zpos. Prove that (an) converges.

Note that
|an+1 − an| = |f(an)− f(an−1)| ≤ α|an − an−1|;

by induction,
|an+1 − an| ≤ αn−1|a2 − a1|

for all n. It follows that whenever m ≥ n,

|am − an| ≤ |am − am−1|+ |am−1 − am−2|+ · · ·+ |an+1 − an|
≤ αm−2|a2 − a1|+ αm−3|a2 − a1|+ · · ·+ αn−1|a2 − a1|
≤ (1 + α+ α2 + · · ·+ αm−n−1)αn−1|a2 − a1|

≤ αn−1

1− α
|a2 − a1|.

Now fix ϵ > 0. Since α ∈ [0, 1), lim
k→∞

αk = 0, so ∃N ∈ Zpos such that |a2−a1|
1−α αN < ϵ. Then

for all m,n > N we have

|am − an| ≤
αN

1− α
|a2 − a1| < ϵ.

This shows that (an) is Cauchy, hence convergent.
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Notes. Any function satisfying |f(x) − f(y)| ≤ α|x − y| for all x, y ∈ R is called Lipschitz
continuous; in the special case that α ∈ [0, 1), it’s called a contraction.

One nice consequence of our proof is that any contraction f must have a fixed point, i.e.
there must exist some κ such that f(κ) = κ. To see this, construct (an) as in the problem,
and let κ := lim

n→∞
an. Then

|f(κ)− κ| ≤ |f(κ)− f(an)|+ |f(an)− κ| ≤ α|κ− an|+ |an+1 − κ| −→ 0

as n gets large. It follows that |f(κ)− κ| is an arbitrarily small non-negative number, hence
must be 0. This proves that f(κ) = κ, so we’ve not only proved the existence of a fixed
point, we’ve constructed a specific one.

In fact, it turns out the fixed point of f is unique. Can you prove this?

(5) Consider the following two sequences:

(an) :
√
2,

√
2
√
2,

√
2

√
2
√
2, · · ·

(bn) :
√
2,

√
2 +

√
2,

√
2 +

√
2 +

√
2, · · ·

More formally, we can define a1 = b1 =
√
2 and for each positive integer n set

an+1 :=
√
2an and bn+1 :=

√
2 + bn.

Finally, we define a third sequence:

cn :=
2n

b1b2 · · · bn

(a) Prove that (an) converges, and make a conjecture about what it converges to. (You don’t have to
prove your conjecture, but you should try to explain where it comes from.)

Observe that if 0 < x < 2 then x <
√
2x < 2. By induction, it follows that our sequence (an)

is monotonically increasing and bounded by 2. By the Monotone Convergence Theorem
(MCT), it must converge.

Non-rigorously, we can guess the sequence converges to 2. Here’s one way to make this guess:

if α =

√
2

√
2
√
2
√
· · · then α =

√
2α, whence α = 2.

(b) Prove that (bn) converges, and make a conjecture about what it converges to. (You don’t have to
prove your conjecture, but you should try to explain where it comes from.)

Observe that
1 < x < 2 =⇒ x <

√
2 + x < 2.

By induction, it follows that our sequence (bn) is monotonically increasing and bounded by
2. By the Monotone Convergence Theorem (MCT), it must converge.

Non-rigorously, we can guess the sequence converges to 2. Here’s one way to make this guess:

if β =

√
2 +

√
2 +

√
2 +

√
· · · then β =

√
2 + β, whence β = 2.
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(c) Prove that (cn) converges, and make a conjecture about what it converges to. (You don’t have to
prove your conjecture, but you should try to explain where it comes from.)

Observe that cn+1 = cn · 2
bn+1

. Since bk ≤ 2 for all k, we deduce that cn+1 ≥ cn for every n,

so (cn) is monotone increasing. If we can show that (cn) is bounded, the MCT will tell us
that (cn) must converge.

I claim that cn ≤ 2 for all n. Note that, directly from the definition, finding an upper bound
on cn is equivalent to finding a lower bound on b1b2 · · · bn. This product is quite compli-
cated, but the analogous product a1a2 · · · an is much easier to work out. This motivates the
following approach.

Lemma 2. bn ≥ an for all n.

Proof. By induction. The base case n = 1 clearly holds. From part (a) we know an ≤ 2 for
all n, whence bn+1 =

√
2 + bn ≥

√
an + bn ≥

√
2an = an+1.

This allows us to translate the problem from getting a lower bound on b1b2 · · · bn to getting
a lower bound on a1a2 · · · an. A straightforward induction proof produces an exact formula
for this product:

Proposition 1. We have a1a2 · · · an = 2s(n) where s(n) :=

n−1∑
k=0

n− k

2k+1
.

It now suffices to get a lower bound on s(n). Some playing around might lead you to conclude

Lemma 3. s(n) = n− 1 + 1
2n .

Proof. This can be proved directly by some clever applications of the geometric series for-
mula, or by induction. I leave the details as an exercise.

Putting all our work together, we conclude that

cn =
2n

b1b2 · · · bn
≤ 2n

a1a2 · · · an
= 2n−s(n) < 2n−(n−1) = 2.

Since (cn) is monotone increasing and bounded above by 2, the MCT implies (cn) converges.
It turns out cn → π

2 ! Here’s a meta-analytic proof.

Lemma 4. For any n, sinx = 2n
(
sin x

2n

) (
cos x

2

) (
cos x

4

) (
cos x

8

)
· · ·

(
cos x

2n

)
.

Proof. This comes from iterating the formula sin 2x = 2 sinx cosx.

Corollary 1. sin x
x =

(
cos x

2

) (
cos x

4

) (
cos x

8

)
· · ·

Proof. By playing with the Taylor expansion of sinx, one can prove that lim
ℓ→∞

ℓ sin x
ℓ = x.

Plugging in x = π
2 and repeatedly applying the cosine half-angle formula cos 1

2x =
√

1+cos x
2

yields the claim.

Notes. Explicitly writing out the definition of cn, we deduce a cute formula for π using
only the number 2:

π = 2 · 2√
2
· 2√

2 +
√
2
· 2√

2 +
√
2 +

√
2

· · ·

Do other numbers have similar expansions?
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