Lecture Notes, September 15, 2022

Our goal is to formalize the notions of open and closed sets, which relies on some other definitions first:
Definition 1. Given a set X and $\alpha \in X$, for a real number $r \in \mathbb{R}$ we define the open ball of radius r around α to be $\mathscr{B}_{r}(\alpha)=\{x \in X \mid d(\alpha, x)<r\}$

Example 1. Graph $\mathscr{B}_{1}((3,2))$ in \mathbb{R}^{2} w.r.t the Euclidean metric.

Example 2. Graph $\mathscr{B}_{1}((3,2))$ in \mathbb{R}^{2} w.r.t the taxicab metric.

Example 3. Graph $\mathscr{B}_{1}((3,2))$ in \mathbb{R}^{2} w.r.t the discrete metric.

Example 4. Graph $\mathscr{B}_{2}(1)$ in $\mathbb{R}_{\geq 0}$ w.r.t the Euclidean metric.

We formalize the notion of boundary as well:
Definition 2. For a metric space X and a subset $A \subseteq X, a \in X$ is on the boundary of A if $\forall \delta>0, \mathscr{B}_{\delta}(a) \cap A \neq$ \emptyset.

The boundary of a set A is denoted ∂A and is the collection of all points $a \in X$ such that a is on the boundary of A.

Definition 3. A set is open if $\partial A \cap A \neq \emptyset$.
Definition 4. A set is closed if $\partial A \subseteq A$.

Many sets are neither open nor closed, and some sets are both. A set that is both open and closed is called clopen

Proposition: A is open iff $\forall \alpha \in A$ there exists some $\delta>0$ such that $\mathscr{B}_{\delta}(\alpha) \subseteq A$.
We say a point α that satisfies this condition is an interior point of A and denote the set of interior points of A as $\operatorname{int}(A)$.

Note: The empty set is clopen, as is its complement. However, these are not the only clopen sets.
Claim. $\mathscr{B}_{r}(a)$ is open.

Proof. Homework.

Some examples:

- the open interval $(1,2)$ in \mathbb{R} with respect to the Euclidean metric is open.
- the interval $(1,2) \times 1$ in \mathbb{R}^{2} (an open interval in \mathbb{R}^{2} at y-value 1) is not open. It is also not closed.
- In $\mathbb{R}_{\geq 0}$ with respect to the Euclidean metric, $[0,3)$ is open. One way to see why is by observing that $\{3\}$ is the entire boundary.

