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Summary/Topics

We defined metric balls, which we used to define closed and open sets
on any metric space..

1 More on p-adics

Last time, we defined the p-adic norm | · |p in the following way:

|n|p :=

{
0 if n = 0,

p−k if n ̸= 0, where pk | n and pk+1 ∤ n.

It may seem odd to define 0 separately, but it is in fact intuitive: 0 is infinitely

divisible by p, and
1

p∞
→ 0.

Intuitively, p-adics compare the end of a number, whereas Euclidean dis-
tance compares the start. (In other words, the Euclidean distance is intuitive if
we compare numbers right to left, whereas the p-adic distance is intuitive if we
compare numbers left to right.) For instance, 351 and 352 are close under Eu-
clidean distance, but far under 10-adic distance; meanwhile, 351 and 451 are far

Euclidean-wise but close 10-adically (
1

100
apart). This idea extends to the p-adic

metric .

In fact, p-adics care so little about the start of a number that p-adic numbers
may have infinite digits trailing to the left of a number, just as under the
Euclidean distance we can have numbers the extend infinitely far to the right. For
example, with respect to the Euclidean metric, we have 0.999 . . . = 1, whereas
with respect to the 5-adic metric, . . . 444 = −1. (More “intuitively”, with respect
to the 10-adic metric, . . . 999 = −1.)

2 Topology of Metric Spaces

We discuss what open and closed sets look like on arbitrary metric spaces.

1. We’re familiar with open intervals in R, which look like

(a, b) := {x ∈ R : a < x < b}.

1



Closed intervals look like

[a, b] := {x ∈ R : a ≤ x ≤ b}.

Intervals that are “half open, half closed” are said to be neither.

2. In R2, we have a similar notion:

We concluded from the above picture that any space X and a subspace A ⊆ X, A
is open iff it contains none of its boundary. Serahn observed that a subspace
B ⊆ X is closed iff it contains all of its boundary.

This is all great, but what on earth is the boundary of a space?

Daniel and Leo agreed that a point on the boundary should be very close
to points on the inside and the outside; no matter how far you zoom into a
point on the boundary, there will always be points of A and points of Ac visible.

Lily formalized this: If you made a ball on the boundary, no matter how
small the ball was, it would contains points both in and outside the subspace. In
other words:

Definition. An open ball of radius r centered around point p is the set of all point
that are within a distance r of p. More precisely:

Br(p) := {x ∈ X : d(x, p) < r}.

We noted the positive radius here acts as an analogue to “ε > 0” in real analysis.

2.1 Examples of Open Balls in Different Metrics

1. Of course, an open ball in Euclidean R2 looks as expected:
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2. We found a ball in R2 under the taxi-cab metric looks like a diamond:

3. Under the discrete metric, Br(p) = {p} for any r ≤ 1 and Br(p) = R2 for any
r > 1. Note that in any metric space, a ball of positive radius must contain

its center. (Why?) Thus, these discrete open balls are the most extreme
examples.

4. In R with respect to the Euclidean metric, B2(1) = (−1, 3):
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5. However, in R≥0 with respect to the Euclidean metric, B2(1) = [0, 3):

Now that we have a rigorous notion of “zooming in”, we can make precise Lily’s
proposed definition of boundary:

Definition. Given a metric space (X, d) and a subspace A ⊆ X, p is on the
boundary of A (denoted ∂A) iff ∀ε > 0 we have

Bε(p) ∩ A ̸= ∅ and Bε(p) ∩ Ac ̸= ∅

That is, every ball centered at a point on ∂A contains points of A and of Ac.

Remark. It’s not an accident that the same symbol ∂ is used to denote the bound-
ary and the derivative. For example, the derivative of the area of a circle is the
length of the boundary, and the derivative of the volume of a sphere is the surface
area of the boundary. More generally, integrating the derivative of a function over
a region is the same as integrating the function itself over the boundary of the
region.
Rewriting our initial formulation of open and closed, we have:

Definition. A is open iff ∂A ∩ A = ∅, and closed iff ∂A ⊆ A.

Note that we are still dependent on distance: openness depends on boundaries,
which depend on open balls, which depend on distance.

Example. The interval (2, 3) is open in R. But (2, 3)× {1} isn’t open in R2!

The points on the line in between 2 and 3 are on the boundary, and yet in the
set. However, it isn’t closed either; (2, 1) and (3, 1) are boundary points, but not
in the set. It is neither open nor closed!
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Here, Lily asked whether something can be closed and open at once.

Michael pointed out that ∅ is, for silly reasons: ∅ contains nothing, and thus
none of its boundary. But it has no boundary, so it contains all of its boundary.
Also, in R, R itself is closed and open, again for silly reasons.

In Euclidean R2, these are the only sets which are closed and open. How-
ever, this is not always the case; in fact, this phenomenon occurs so frequently in
some spaces that it has earned its own terrible portmanteau: clopen.

Lastly, we examined the following:

Proposition. For any metric space (X, d) and any p ∈ X, the singleton {p} is
closed.

We came up with some ideas, and we’ll start next class with a rigorous proof.
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