Lecture Notes, September 15, 2022

Our goal is to formalize the notions of open and closed sets, which relies on some other definitions first:

Definition 1. Given a set X and $\alpha \in X$, for a real number $r \in \mathbb{R}$ we define the **open ball** of radius r around α to be $\mathscr{B}_r(\alpha) = \{x \in X | d(\alpha, x) < r\}$

Example 1. Graph $\mathcal{B}_1((3,2))$ in \mathbb{R}^2 w.r.t the Euclidean metric.

Example 2. Graph $\mathcal{B}_1((3,2))$ in \mathbb{R}^2 w.r.t the taxicab metric.

Example 3. Graph $\mathcal{B}_1((3,2))$ in \mathbb{R}^2 w.r.t the discrete metric.

Example 4. Graph $\mathscr{B}_2(1)$ in $\mathbb{R}_{\geq 0}$ w.r.t the Euclidean metric.

We formalize the notion of boundary as well:

Definition 2. For a metric space X and a subset $A \subseteq X$, $a \in X$ is on the **boundary** of A if $\forall \delta > 0$, $\mathscr{B}_{\delta}(a) \cap A \neq \emptyset$.

The boundary of a set A is denoted ∂A and is the collection of all points $a \in X$ such that a is on the boundary of A.

Definition 3. A set is open if $\partial A \cap A \neq \emptyset$.

Definition 4. A set is **closed** if $\partial A \subseteq A$.

Many sets are neither open nor closed, and some sets are both. A set that is both open and closed is called **clopen**

Proposition: A is open iff $\forall \alpha \in A$ there exists some $\delta > 0$ such that $\mathscr{B}_{\delta}(\alpha) \subseteq A$.

We say a point α that satisfies this condition is an interior point of A and denote the set of interior points of A as int(A).

Note: The empty set is clopen, as is its complement. However, these are not the only clopen sets.

Claim. $\mathscr{B}_r(a)$ is open.

Proof. Homework.

Some examples:

- the open interval (1,2) in \mathbb{R} with respect to the Euclidean metric is open.
- the interval $(1,2) \times 1$ in \mathbb{R}^2 (an open interval in \mathbb{R}^2 at y-value 1) is not open. It is also not closed.
- In $\mathbb{R}_{\geq 0}$ with respect to the Euclidean metric, [0,3) is open. One way to see why is by observing that $\{3\}$ is the entire boundary.