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1. RECAP

Last time: Given metric space (X, d), A ⊆ X is open iff ∂A ∩A = ∅. Equivalently, A is open if every point
in A is in the interior of A, so there is an open ball in A which contains the point.
A ⊆ X is closed iff ∂A ⊆ A.
x ∈ ∂A iff ∀δ > 0, Bδ(x) ∩ A ̸= ∅ and Bδ(x) ∩ Ac ̸= ∅.
x ∈ int A iff ∃δ > 0 s.t Bδ(x) ⊆ A.

1.1. Open sets in R (with Euclidean metric). All open intervals (a, b), where a < b, are open sets in R. ∅
and R are also open, we can think of these as the intervals (0, 0) and (−∞,∞). We can also take the union of
any finite number of open intervals to get a new open set.

Is a single point such as A = {5} open? We have that 5 ∈ ∂A, and 5 ∈ A, so ∂A∩A ̸= ∅ and A is not open.
In fact, we have that every open set in R with this metric is the union of intervals:

Theorem 1.1. All open sets in R with respect to the Euclidean metric are countable unions of open intervals.

Proof sketch. Given A ⊆ R open, pick some x ∈ A. Then there exists an open interval containing x which
is contained in A. Thus, there exists a maximal interval Ix containing x which is contained in A. “Maximal”
means that Ix contains all other such intervals, we can quickly construct Ix by taking the union of all such
intervals. Then we have that

A =
⋃
x∈A

Ix

since each Ix contains x and each Ix is contained in A. We can remove the “superfluous” x’s to get a disjoint
union. This step needs justification but this is just a proof sketch.

Now, we have expressed A as a disjoint union of open intervals. Why must there only be countably many
such Ix?

Each interval contains a rational, and there are only countably many rationals, so this union is countable. □

The above result does not hold for closed sets, as we can find a countable union of closed sets which is not
closed:

[0, 1/2] ∪ [1/2, 3/4] ∪ [3/4, 7/8] ∪ · · · = [0, 1) (1.1)
which is not closed. Where does the proof break down when we replace open with closed? - this is left as an
exercise. However, we can characterize closed sets with the following result:

Proposition 1.2. A is closed iff Ac is open.

Proof.

A is closed ⇐⇒ ∂A ⊆ A

⇐⇒ ∂A ∩ Ac = ∅
⇐⇒ ∂(Ac) ∩ Ac = ∅
⇐⇒ Acis open.

We need to show that ∂A = ∂(Ac), but we can do this later. □
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Remark. The above result holds in any metric space. In general, we are talking about metric spaces right
now because they can be seen as an “easy” version of general topological spaces, or at least a more grounded
version. We will begin working with general topological spaces soon, and many of these same results will hold.

1.2. Convergence of sequences. Given some sequence (an) ⊆ X , where (X, d) is a metric space.

Definition. (an) converges iff ∃L ∈ X s.t ∀ϵ > 0, there exists N s.t if n > N then d(an, L) < ϵ.

In other words, (an) gets arbitrarily close to L.

Example 1. Does (an) = (1/n) converge?
(1) In R with the usual Euclidean metric, yes.
(2) In R− 0 with the usual Euclidean metric, no. While in some sense the sequence gets closer and closer

to 0, 0 is not in the space so it does not get closer to any point.
(3) In R with the discrete metric, no. 1/n will always be a distance of 1 away from 0, so it will never

converge to 0 (or anything else).

Pick A ⊆ X , and suppose (an) ⊆ A. If (an) converges (to some point in X), must limn→∞ an ∈ A?
No: for example, if A = (0, 1], then lim 1/n = 0 /∈ A but 1/n is always in A.
So where can the limit live if it is not in A? First, a definition.

Definition. Set A = A ∪ ∂A. A is called the closure of A.

Remark. The closure of A consists of all points close to A. Any point which is greater than 0 distance away
from all points in A is not in the closure, which we can make precise with the following statement.

Proposition 1.3. For all x /∈ A, ∃δ > 0 s.t d(x, a) ≥ δ ∀a ∈ A.

Proof. Pick some x /∈ A. Then x /∈ A and x /∈ ∂A. Then there exists δ > 0 such that Bδ(x) ∩ A = ∅ or
Bδ(x)∩Ac = ∅. But x /∈ A, so x ∈ Ac and we definitely have that Bδ(x)∩Ac ̸= ∅. This means we must have
Bδ(x) ∩ A = ∅. Thus for all a ∈ A, we have that a /∈ Bδ(x), so d(a, x) ≥ δ. □

We immediately get the following result as a corollary.

Corollary 1.4. If (an) ⊆ A converges, then lim an ∈ A.

Proof. If (an) were to converge to a point L outside of A, then d(L, an) ≥ δ for some δ by the previous
proposition, which is a contradiction on the definition of a limit. □

Corollary 1.5. We have that X = A ⊔ int (Ac). Here ⊔ means disjoint union. Note also that int (Ac) denotes
the interior of Ac.

Proof. This follows from our earlier proposition. If something is not in the closure of A, it is at least δ from
everything in A, so it is in the interior of Ac. □

Remark. A = int A ⊔ ∂A. Thus the entire metric space is X = int A ⊔ ∂A ⊔ int Ac. This shows that the
boundary of A is the same as the boundary of Ac if we simply swap A and Ac.
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