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0. Note on pset:

Your proof that Rl, the Sorgenfrey line, does not admit a countable basis should not imply
that the normal topology on R does not admit a countable basis. It does; for instance,
B = (a, b) : a, b ∈ Q is a countable basis since every open interval contains a sub-interval
with rational endpoints.

1. Last time:

If you want to tell points apart by open sets, you can impose the T0 separation axiom: given
two points in our topological space, there is an open set that only contains either one of
them.

This axiom is basically the least structure needed to be able to tell all points apart by
open sets. Because it is such a weak condition, it does not imply many nice properties; for
instance, in (R, τ7), the particular point topology at 7, which is T0, the constant sequence
7, 7, 7, 7, 7 → π.

If you want a little better structure, you can impose the stronger axiom T1: given two points
in this space, there is an open set containing the first and not the second (and one containing
the second and not the first).

This is a much nicer condition; for instance, constant sequences only converge to what they
should in this space, as (a, a, a, . . . ) ̸→ b since by T1 there is an open set containing b but
not a. Furthermore,

Proposition 1.1. A topological space is T1 iff singletons are closed in it.

(⇒) if x ∈ X, for all y ∈ X such that y ̸= x there is an open set Uy containing y and not x.
Then

⋃
y ̸=x

Uy = X \ {x} is a union of opens, and thus open, so {x} is closed.

(⇐) if all singletons are closed, for any points a, b the sets X \ {a} and X \ {b} are open,
and each contains one but not the other, demonstrating that our space is T1. □
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However, we can still have some weird things happening for convergence in T1, such as in
Rcofinite,

1
n
→ π, π2, 7, . . . . This is because although any two points can be distinguished by

open sets, those open sets may have to overlap, so you could have points that are arbitrarily
close to multiple points.

To fix this, we can impose the even stronger axiom T2, the Hausdorff condition: these spaces
are the nicest, and the condition implies many nice and intuitive properties. For instance,

Proposition 1.2. If (X, τ) is Hausdorff, then every convergent sequence in it has a unique
limit.

Let (x0, x1, x2, . . . ) → x and assume for contradiction that (x0, x1, x2, . . . ) → y also. Now by
the T2 axiom take open sets Ux ∋ x and Uy ∋ y such that Ux ∩ Uy = ∅. Then by definition
of limits, for sufficiently high n, xn ∈ Ux and xn ∈ Uy, but Ux∩Uy = ∅, a contradiction. □

(Note that the converse does not hold! For instance, the cocountable topology on R has
unique sequential limits but is not Hausdorff.)

2. An important example:

Consider the algebraic numbers, i.e., roots of polynomials with integer coefficient; alge-
braically, these numbers are less ”nice” than the rationals, but more ”nice” than arbitrary
numbers in C. You can describe an algebraic number, for example, as the largest root to
(x5 − x− 1).

The algebraic numbers are the solutions to single-variable polynomials, but the solutions to
multivariable polynomials are also very well-behaved, eg: the solutions to

x2 + y2 − 1 = 0

are easily described as the points lying on the unit circle.
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Let Q = {all algebraic numbers}. This is a field, i.e., a set equipped with a commutative
addition, a commutative multiplication, and appropriate subtraction and division to act as
those operations’ inverses, with some compatibility conditions.

We want the roots of a polynomial p(x1, . . . , xn) ∈ R[x1, x2, ..., xn] (the ring of polynomials
in n variables with coefficients in R) to form a closed set.

This means that we want the set supp(p) = {(a1, . . . , an) | p(a1, . . . , an) ̸= 0} to be open.

Proposition 2.1. B := {supp(p) | p ∈ R[x1, x2, ..., xn]} is a basis.

Let U1 = supp(p), U2 = supp(q) ∈ B; then
U1 ∩ U2 = supp(p) ∩ supp(q)

= {(a1, . . . , an) | p(a1, . . . , an) ̸= 0} ∩ {(a1, . . . , an) | q(a1, . . . , an) ̸= 0}
= {(a1, . . . , an) | p(a1, . . . , an) ̸= 0 ∧ q(a1, . . . , an) ̸= 0}
= {(a1, . . . , an) | p(a1, . . . , an) · q(a1, . . . , an) ̸= 0}
= {(a1, . . . , an) | (p · q)(a1, . . . , an) ̸= 0}
= supp(p · q) ∈ B

Moreover, supp(1) = Rn, so B covers the whole space and intersections can be rewritten as
unions, so B is a basis. □

This generates the ”Zariski topology”, a T1 space (when coefficients are in R), but badly not
T2, since any two non-empty sets intersect in this topology.

3. Analysis:

Given (X, τ) and A ⊆ X, what is intA?

Definition (Max). intA is the largest open subset of A, i.e.,
⋃

O∈τ,O⊆A

O.

Note that this definition is dual to closure:

A =
⋂

X\C∈τ,A⊆C

C

Definition (Elias). x ∈ intA iff ∃O ∈ τ, such that x ∈ O ⊆ A.

These two definitions are evidently equivalent.

Similarly, the boundary of A can be defined as:

Definition (Sam). ∂A = A \ intA

Definition (Lizzie). ∂A = AC \ intAC
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These are equivalent as AC = (intA)C and intAC = A
C
, and if A ⊆ B then B \A = AC \BC .

Definition. x ∈ ∂A iff ∀O, such that x ∈ O, O ∩ A ̸= Ø and O ∩ AC ̸= Ø.

This too is equivalent as if there was an open neighborhood of x contained in A, then x
would belong to the interior, and if there was an open neighborhood of x contained in AC ,
then that neighborhood’s complement would contain A, so x would not be in the closure.

Proposition 3.1. X = intA ⊔ ∂A ⊔ intAC

This is basically just unwinding definitions; it just means that (intAC)C \ intA = ∂A, but
(intAC)C is just A, and A \ intA is just our definition of ∂A.

4. Continuity

Recall that in metric spaces (X, d), (Y, e), f : X → Y is continuous at α ∈ X iff ∀ϵ > 0
(perturbations in Y ), ∃δ > 0 (perturbations in X) such that

d(x, α) < δ =⇒ e(f(x), f(α)) < ϵ

or equivalently,

iff ∀ϵ > 0, ∃δ > 0:
x ∈ Bδ(α) =⇒ f(x) ∈ Bϵ(f(α))

Relaxing our conditions to accommodate a general topological space with a basis, we get

f is continuous at α if for any basic opens B around f(α) there exists a basic open B′ around
α such that

x ∈ B′ =⇒ f(x) ∈ B

or alternatively written:
B′ ⊆ f−1(B)

This motivates our definition of continuity in topological spaces:

Definition. Given topological spaces (X, τ) and (Y, ρ), and a function f : X → Y ,

f is continuous at α ∈ X if for all O1 ∈ ρ such that f(α) ∈ O1, there exists an open set
O2 ∈ τ with α ∈ O2 and O2 ⊆ f−1(O1).
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