Williams College
 Department of Mathematics and Statistics

MATH 374 : TOPOLOGY

Problem Set 3 - due Friday, September 30th

INSTRUCTIONS:

If this is your week to write, please submit this assignment via Glow by 4 pm on Friday; the solutions to at least four of the problems should be written in $\mathrm{AAT}_{\mathrm{E}} \mathrm{X}$. If this is your oral week, please be prepared by Friday to present your solutions orally (but you do not have to write them up in any form; during our meetings you won't be using any notes). If you have any questions - either about math or about $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$-please don't hesitate to reach out to me and we can figure it out.
3.1 The topology of \mathbb{R}^{2} induced by the Euclidean metric is called the usual topology on \mathbb{R}^{2}. Describe the topology of \mathbb{R}^{2} induced by the taxicab metric. What about the chessboard metric? What about the British Rail metric?
3.2 Suppose \mathcal{T} is a topology on \mathbb{R}^{2} that contains the set $\{(x, x): x \in \mathbb{R}\}$ and also contains $(x, x+2) \times\{y\}$ for each $x, y \in \mathbb{R}$. Here (x, x) denotes a point in the plane, while $(x, x+2)$ denotes an open interval!
(a) Is the interval $\left(\frac{3}{4}, 1\right) \times\{0\} \in \mathcal{T}$?
(b) Is the interval $(1,4) \times\{0\} \in \mathcal{T}$?
(c) Does \mathcal{T} contain an element consisting of countably infinitely many points?
3.3 Let - be a closure operator on X. Prove that $A \subseteq B \subseteq X$ implies $\bar{A} \subseteq \bar{B}$. [You may not use properties of closed sets for this problem, since we used this as a lemma in class to prove properties of closed sets!]
3.4 In class, Sasha made a very reasonable proposal that the closure of a singleton set (i.e. a set consisting of a single element) should be itself. Sadly, topology cares little for our intuition.
Construct an example of a topological space (X, \mathcal{T})-i.e. a space X with a topology \mathcal{T} satisfying our three conditions $(O-i)-(O-i i i)$ from class-in which $2 \leq|X|<\infty$, and $\overline{\{x\}} \neq\{x\}$ for some $x \in X$. Can you construct such an example in which X is infinite?
3.5 Prove that the intersection of any collection of topologies on X is a topology on X.
3.6 Recall from Lecture 5 that to any closure operator - on X we associated the set \mathcal{C}, consisting of all $A \subseteq X$ satisfying $A=\bar{A}$. (The elements of \mathcal{C} are called the closed sets of X induced by \cdot.) We then proved that \mathcal{C} must satisfy three properties:
$(C-i) \emptyset, X \in \mathcal{C}$,
$(C-i i) \mathcal{C}$ is closed under finite unions, and
(C-iii) \mathcal{C} is closed under arbitrary intersections.
[NB: the word closed in (ii) and (iii) is unrelated to the term closed set.]
(a) In class we asserted that the process can be run in reverse, as well: given a set $\mathcal{C} \subseteq \mathcal{P}(X)$, we followed Rauan's idea and defined a closure operator on X by setting the closure of S to be the smallest element of \mathcal{C} containing S. Prove that if \mathcal{C} fails to satisfy any one of ($C-i)$, (C-ii), or (C-iii), then the induced 'closure' can fail to be a closure.
(b) Verify that if \mathcal{C} does satisfy all of $(C-i),(C$-ii), and (C-iii), then the induced operator described above is a closure.
(c) Prove that if you start with a closure, generate \mathcal{C} as described above, and then use \mathcal{C} to induce a closure, you end up with the same closure operator you started with.
(d) Prove that if you start with a set \mathcal{C} satisfying properties $(C-i),(C-i i)$, and (C-iii), induce a closure, and then use that closure to induce a set of closed sets, this set is \mathcal{C}.
(e) Prove that there's a bijection between the set of all possible closures on X and the set of all possible topologies on X. (Your proof should be quite short.)
3.7 Given a set X and a closure operator - on X. One of the defining properties of closure is that it's idempotent: applying it repeatedly produces the same result as applying it once. In particular, starting with a set $A \subseteq X$ one can generate at most 2 distinct sets using the closure operator: A and \bar{A}. The purpose of this exercise is to explore the relationship between the closure and complement operators.
(a) Do the closure and complement operators commute? In other words, given $A \subseteq X$, does $\overline{A^{c}}=\bar{A}^{c}$?
(b) Define a new operator $i: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ by $i(A):=\left(\overline{A^{c}}\right)^{c}$. Can you give an intuitive description of this set? (Think in \mathbb{R}^{2} !)
(c) Given $A \subseteq X$, prove that there are only finitely many different sets that can be generated from A by applying complements and closures. Can you get an explicit upper bound on how many?
[Hint: Your upper bound shouldn't depend on A or X!]

