Williams College
 Department of Mathematics and Statistics

Problem Set 6 - due Friday, October 28th

INSTRUCTIONS:

If this is your week to write, please submit this assignment via Glow by 4 pm on Friday; the solutions to at least four of the problems should be written in $\mathrm{AN}_{\mathrm{E}} \mathrm{X}$. If this is your oral week, please be prepared by Friday to present your solutions orally (but you do not have to write them up in any form; during our meetings you won't be using any notes). If you have any questions - either about math or about $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ - please don't hesitate to reach out to me and we can figure it out.
6.1 Consider \mathbb{R}_{7} (the reals under the particular point topology \mathcal{T}_{7}). When is a subspace of \mathbb{R}_{7} connected? When is it disconnected? Prove your assertions.
6.2 Prove that continuous image of connected set is connected. In other words, if $f: X \rightarrow Y$ is continuous and X is connected, prove that $f(X)$ is connected.
6.3 Exploring path-connectedness
(a) Prove that if X is path-connected, then X is connected.
(b) Prove that $\mathbb{R}^{2} \backslash \mathbb{Q}^{2}$ (under the subspace topology of $\mathbb{R}_{\text {usual }}^{2}$) is path-connected, hence connected.
6.4 Prove that if A is a connected subset of X and $A \subseteq C \subseteq \bar{A}$, then C is connected.
6.5 Must any continuous bijection be a homeomorphism? In other words, is the condition that the inverse be continuous redundant?
6.6 Give an explicit example of a Hausdorff topology \mathcal{T}_{1} and a non-Hausdorff topology \mathcal{T}_{2}, both on \mathbb{R}, and a continuous bijection $f:\left(\mathbb{R}, \mathcal{T}_{1}\right) \rightarrow\left(\mathbb{R}, \mathcal{T}_{2}\right)$. (Thus, Hausdorffness is not preserved under bijective continuous maps.)
6.7 Is \mathbb{R}^{2} with respect to the Zariski topology connected?

