Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

Problem Set 6 - due Friday, October 28th

INSTRUCTIONS:

If this is your week to write, please submit this assignment via Glow by 4pm on Friday; the solutions to at least four of the problems should be written in $\text{LAT}_{\text{E}}X$. If this is your oral week, please be prepared by Friday to present your solutions orally (but you do not have to write them up in any form; during our meetings you won't be using any notes). If you have any questions—either about math or about $\text{LAT}_{\text{E}}X$ —please don't hesitate to reach out to me and we can figure it out.

- **6.1** Consider \mathbb{R}_7 (the reals under the particular point topology \mathcal{T}_7). When is a subspace of \mathbb{R}_7 connected? When is it disconnected? Prove your assertions.
- **6.2** Prove that continuous image of connected set is connected. In other words, if $f: X \to Y$ is continuous and X is connected, prove that f(X) is connected.
- 6.3 Exploring path-connectedness
 - (a) Prove that if X is path-connected, then X is connected.
 - (b) Prove that $\mathbb{R}^2 \setminus \mathbb{Q}^2$ (under the subspace topology of \mathbb{R}^2_{usual}) is path-connected, hence connected.
- **6.4** Prove that if A is a connected subset of X and $A \subseteq C \subseteq \overline{A}$, then C is connected.
- **6.5** Must any continuous bijection be a homeomorphism? In other words, is the condition that the inverse be continuous redundant?
- **6.6** Give an explicit example of a Hausdorff topology \mathcal{T}_1 and a non-Hausdorff topology \mathcal{T}_2 , both on \mathbb{R} , and a continuous bijection $f : (\mathbb{R}, \mathcal{T}_1) \to (\mathbb{R}, \mathcal{T}_2)$. (Thus, Hausdorffness is not preserved under bijective continuous maps.)
- **6.7** Is \mathbb{R}^2 with respect to the Zariski topology connected?