Williams College
 Department of Mathematics and Statistics

Problem Set 9 - due Friday, November 18th

INSTRUCTIONS:

This week I'd like everyone to submit written assignments; in particular, there will not be any meetings this Friday. Please submit your assignment via Glow by 4 pm on Friday. If you have any questions - either about math or about $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ - please don't hesitate to reach out to me and we can figure it out.

We've seen many examples of surfaces (2-dimensional objects-we'll discuss a formal definition of this on Monday). For example, the sphere S^{2}, the torus T^{2}, the real projective plane $\mathbb{R} \mathbb{P}^{2}$, the Klein bottle K, and the Möbius strip M are all surfaces. Given two surfaces X and Y, there's a natural way to combine them: their connected sum (denoted $X \# Y$) is the surface you get by deleting the interior of a disk from each surface, and then gluing the boundaries of these two holes together. Here's an illustration of $T^{2} \# T^{2}$:

$T^{2} \# T^{2}$ is a two-holed torus
9.1 Above we saw an illustration that $T^{2} \# T^{2}$ is a two-holed torus. Use gluing diagrams to show this.
[Hint: You might wish to make use of Problem $\mathbf{8 . 4}$ from the last problem set.]
9.2 Suppose X is a surface. What's a simple description of $S^{2} \# X$?
9.3 Show that $M \# M \approx K$.
9.4 Show that $\mathbb{R P}^{2} \# T^{2} \approx \mathbb{R}^{2} \# K$.
9.5 Show that $\mathbb{R P}^{2} \# T^{2} \approx \mathbb{R} \mathbb{P}^{2} \# \mathbb{R P}^{2} \# \mathbb{R}^{2}$.
9.6 Compute $\chi\left(T^{2} \# T^{2}\right)$ and $\chi\left(T^{2} \# T^{2} \# T^{2}\right)$. Make a conjecture about $\chi(\underbrace{T^{2} \# T^{2} \# \cdots \# T^{2}}_{n \text { copies }})$.
9.7 Make a conjecture about $\chi(X \# Y)$ in terms of $\chi(X)$ and $\chi(Y)$.

