Instructor: Leo Goldmakher

Williams College **Department of Mathematics and Statistics**

Problem Set 9 - due Friday, November 18th

INSTRUCTIONS:

This week I'd like everyone to submit written assignments; in particular, there will not be any meetings this Friday. Please submit your assignment via Glow by 4pm on Friday. If you have any questions-either about math or about LATFX—please don't hesitate to reach out to me and we can figure it out.

We've seen many examples of surfaces (2-dimensional objects—we'll discuss a formal definition of this on Monday). For example, the sphere S^2 , the torus T^2 , the real projective plane \mathbb{RP}^2 , the Klein bottle K, and the Möbius strip M are all surfaces. Given two surfaces X and Y, there's a natural way to combine them: their connected sum (denoted X # Y) is the surface you get by deleting the interior of a disk from each surface, and then gluing the boundaries of these two holes together. Here's an illustration of $T^2 \# T^2$:

 $T^2 \# T^2$ is a two-holed torus

- 9.1 Above we saw an illustration that $T^2 \# T^2$ is a two-holed torus. Use gluing diagrams to show this. [Hint: You might wish to make use of Problem 8.4 from the last problem set.]
- **9.2** Suppose X is a surface. What's a simple description of $S^2 \# X$?
- **9.3** Show that $M \# M \approx K$.
- **9.4** Show that $\mathbb{RP}^2 \# T^2 \approx \mathbb{RP}^2 \# K$.
- **9.5** Show that $\mathbb{RP}^2 \# T^2 \approx \mathbb{RP}^2 \# \mathbb{RP}^2 \# \mathbb{RP}^2$.

9.5 Show that $\chi(T^2 \# T^2)$ and $\chi(T^2 \# T^2 \# T^2)$. Make a conjecture about $\chi(\underbrace{T^2 \# T^2 \# \cdots \# T^2}_{n \text{ copies}})$.

9.7 Make a conjecture about $\chi(X \# Y)$ in terms of $\chi(X)$ and $\chi(Y)$.