
Instructor: Leo Goldmakher

Williams College
Department of Mathematics and Statistics

MATH 374 : TOPOLOGY

Solution Set 2

2.1 Metrics on R2.

(a) Prove that the Euclidean metric on R2 is, in fact, a metric.

By definition,
d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2.

This equals 0 iff both (x1 − y1)
2, (x2 − y2)

2 = 0, which happens iff x1 = y1 and x2 = y2. It’s
also clear that this metric is symmetric: d(x, y) = d(y, x). It remains to prove the triangle
inequality.
The most direct approach is quite algebraically involved. However, we can simplify this
significantly by observing that the Euclidean distance is translation invariant, i.e. that
d(x, y) = d(x − z, y − z) for any z. After translating appropriately, we see that triangle
inequality is equivalent to showing that

d(x, y) ≤ d(x, 0) + d(0, y) (∗)

for all x, y.

Note that (x1y2 − x2y1)
2 ≥ 0. It follows that

(x1y1 + x2y2)
2 ≤ (x2

1 + x2
2)(y

2
1 + y22). (†)

In particular,

−x1y1 − x2y2 ≤
√
(x2

1 + x2
2)(y

2
1 + y22).

From here, it’s straightforward to deduce√
(x1 − y1)2 + (x2 − y2)2 ≤

√
x2
1 + x2

2 +
√
y21 + y22

which is precisely (∗).

Discussion. Above, we saw that (†) implies (∗); it turns out that the converse implication
holds as well, so the inequality (†) is equivalent to the triangle inequality for the Euclidean
metric on R2. Similarly, it turns out the triangle inequality for the Euclidean metric on Rn

is equivalent to the following:

Lemma 1 (Cauchy-Schwarz inequality). For any real numbers ai, bi, we have(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.



(b) Suppose O is a subset of R2 that’s open with respect to the Euclidean metric. Must it also be open
with respect to the taxicab metric?

Suppose O ⊆ R2 is open with respect to the euclidean metric. Pick any α ∈ O; we claim
that α is in the interior of O with respect to the taxicab metric. Since O is open with
respect to the euclidean metric, ∃δ > 0 such that the open euclidean ball of radius δ around
α is entirely contained inside O.

Consider the open taxicab ball of radius δ around α. Pick any x in this ball; by definition,
the taxicab distance between x and α is smaller than δ, i.e.

|x1 − α1|+ |x2 − α2| < δ.

Squaring both sides, we deduce

|x1 − α1|2 + |x2 − α2|2 ≤ |x1 − α1|2 + |x2 − α2|2 + 2|x1 − α1| · |x2 − α2| < δ2.

This implies that x lies in the euclidean ball of radius δ around α, which we know is entirely
contained in O. We’ve therefore shown that every point in the taxicab ball of radius δ around
α is contained entirely in O; it follows that α is an interior point of O with respect to the
taxicab metric, as desired.

Discussion. All this becomes obvious when looking at the pictures of open balls we drew
in Lecture 3: the taxicab open ball is the largest diamond that fits inside the euclidean ball
of the same radius.

(c) The Euclidean and taxicab metrics on R2 both have the form

dp(x, y) :=
(
|x1 − y1|p + |x2 − y2|p

)1/p
(d1 is the taxicab metric, d2 is the Euclidean metric). It turns out that dp is a metric for every
real number p ≥ 1. (Don’t worry about proving it here, although it is a fun challenge to think
about when you have some spare time.) Can you describe any of the other metrics on R2 that we’ve
encountered (chessboard, British Rail, and discrete) in terms of dp?

This was very open ended, but the cleanest answers are those that describe the metric in
terms of dp without reference to specific inputs.

Claim. The chessboard metric is d∞ := lim
p→∞

dp.

Proof. If x = y then dp(x, y) = 0 for all p, so the limit is also 0. If x ̸= y, then without loss
of generality we have

max{|x1 − y1|, |x2 − y2|} = |x1 − y1| > 0.

Then

dp(x, y) = |x1 − y1|
(
1 +

(
|x2 − y2|
|x1 − y1|

)p)1/p

.

Since this is bounded above by |x1 − y1| · 21/p and bounded below by |x1 − y1|, we see
dp(x, y) → |x1 − y1| as p → ∞.

The discrete metric is min{⌈d2⌉, 1}. (This is more artificial, of course!)

Discussion.The metric dp is called the ℓp metric; you will explore it in virtually any advanced
course on analysis.
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2.2 In class we saw an example of a set that was open in R, but not when viewed within R2. The following
questions are inspired by Levi.

(a) If A ⊆ R (with respect to the Euclidean metric) is open, is it possible for A× {1} to be open in R2

(with respect to the Euclidean metric)? Either prove that it’s never possible, or present an example
where it is possible.

No, it is not possible. To see this, pick any point in A× {1}, say, (a, 1), and consider a ball
Br(a, 1) in R2. This ball clearly intersects A× {1}, since (a, 1) ∈ Br(a, 1). But Br(a, 1) also
contains the point

(
a, 1 + r

2

)
/∈ A × {1}. In other words, every point in A × {1} is on the

boundary of A× {1}, so the set cannot be closed!

(b) If A ⊆ R (with respect to the Euclidean metric) is closed, is A × {1} closed in R2 (with respect
to the Euclidean metric)? Either prove that this is always the case, never the case, or that it is
sometimes the case and sometimes not by giving explicit examples.

Yes. We’ll prove this by showing that (A× {1})c is open.

Pick p /∈ A× {1}. If p2 = 1, then p1 /∈ A. Since A is closed, Ac is open, so there must exist
δ > 0 such that (p1 − δ, p1 + δ) ∩A = ∅. It immediately follows that Bδ(p) ∩ (A× {1}) = ∅.
We’ve proved:

p2 = 1 =⇒ p ∈ int
(
(A× {1})c

)
. (♣)

If p /∈ A × {1} and p2 ̸= 1, we proceed differently. Set ϵ := |p2−1|
2 , and consider Bϵ(p). For

any x ∈ Bϵ(p), we have

|x2 − p2| ≤
√

|x1 − p1|2 + |x2 − p2|2 < ϵ.

We deduce
2ϵ = |p2 − 1| ≤ |x2 − 1|+ |x2 − p2| < |x2 − 1|+ ϵ,

whence |x2 − 1| > ϵ. In particular, x /∈ A×{1}. We conclude that Bϵ(p)∩ (A×{1}) = ∅, or
in other words, that Bϵ(p) ⊆ (A× {1})c. We’ve proved:

p2 ̸= 1 =⇒ p ∈ int
(
(A× {1})c

)
. (♡)

Combining (♣) and (♡) shows that (A×{1})c consists entirely of interior points, hence must
be open; it follows that A× {1} must be closed.

2.3 Let R∞ be the set of all sequences of real numbers. Determine (with proof) whether each of the following
is a metric on R∞.

(a) d(x, y) := max{|xn − yn|}.
This isn’t even well-defined: the sequences xn = 0 and yn = n would be infinitely far apart
by this metric, which isn’t allowed.
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(b) d(x, y) :=

{
1

n+1 if ∃n ≥ 0 s.t. xi = yi for all i ≤ n and xn+1 ̸= yn+1

0 if x = y.

Yes, this is a metric. The first two properties are straightforward to verify, so we focus on
the triangle inequality d(x, z)+d(y, z) ≥ d(x, y). If x = y, this is obvious from the definition
of d, since d(x, z) ≥ 0 and d(y, z) ≥ 0 while d(x, y) = 0. Thus it suffices to consider the case
when d(x, y) = 1/(n + 1) for some non-negative integer n, i.e. when x and y agree for the
first n terms but disagree at the (n + 1)st. There are two possibilities for a third sequence
z: either it disagrees with x before the nth term, or it agrees with x up until the nth term
(and possibly beyond).

Suppose d(x, z) = 1
m+1 for some m < n. Since d(α, β) ≥ 0 for all α, β, we have

d(x, z) + d(z, y) ≥ d(x, z) =
1

m+ 1
>

1

n+ 1
= d(x, y),

so triangle inequality holds in this case.

If instead z agrees with x through term n (and possibly beyond), then z must also agree
with y at least through term n. However, it cannot agree with both x and y at the (n+1)st
term, since xn+1 ̸= yn+1 by hypothesis. Without loss of generality, assume zn+1 ̸= xn+1. It
follows that d(x, z) = 1/(n+ 1), which implies

d(x, z) + d(z, y) ≥ d(x, z) =
1

n+ 1
= d(x, y).

(c) d(x, y) :=

∞∑
n=1

1

2n
(
1− δ(xn, yn)

)
where δ(x, y) = 1 if x = y and 0 otherwise.

Let D denote the discrete metric on R. Observe that

d(x, y) =

∞∑
n=1

1

2n
D(xn, yn).

The sum is zero iff each term is zero (which happens iff the sequences agree), and the
definition is symmetric with respect to the sequences x, y. The triangle inequality is inherited
term-wise from the discrete metric.

2.4 Given finite sets A,B ⊆ Z, let A−B := {a− b : a ∈ A, b ∈ B} and define the Ruzsa distance by

d(A,B) := log
|A−B|√
|A|
√
|B|

.

(Here |S| denotes the number of elements in a set S.) Is this a metric?

No, this is not a metric, because d(A,A) might be nonzero. For example, let A := {2, 3}.
Then A−A = {0,±1}, so d(A,A) = log 3

2 ̸= 0.

Discussion.Amazingly, the Ruzsa distance does satisfy the triangle inequality—a fun exer-
cise!
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2.5 Given a metric space (X, d) where X has at least 2 elements. Prove that there exists a metric on X
that’s neither the discrete metric nor equal to the metric d.

Observe that rescaling a metric doesn’t change that it’s a metric. Also, summing any two
metrics produces a metric. Thus, any linear combination D(x, y) := αd1(x, y) + βd2(x, y) of
any two metrics d1, d2 is a metric as well.

We can form a new metric in other ways, too. Here’s a nice example: given a metric d, set

D(x, y) := d(x,y)
1+d(x,y) . I claim that D is a metric. It’s easy to verify the first two properties,

so it suffices to handle the triangle inequality:

D(x, z) = 1− 1

1 + d(x, z)
≤ 1− 1

1 + d(x, y) + d(y, z)
=

d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)
= D(x, y) +D(y, z).

It’s an exercise to check that D ̸= d and also cannot equal the discrete metric.

2.6 Prove that a point cannot be simultaneously in the interior of A and on the boundary of A. Why doesn’t
this contradict our bizarre example from Lecture 3, in which we saw that [0, 3) is open in R≥0 with
respect to the Euclidean metric?

Claim. ∂A ∩ intA = ∅.
Proof. Observe that

x ∈ ∂A =⇒ Bϵ(x) ∩Ac ̸= ∅ for all ϵ > 0 ⇐⇒ Bϵ(x) ̸⊆ A for all ϵ > 0 ⇐⇒ x /∈ intA.

This concludes the proof.

Thus, we’ve proved that any interior point of A cannot live in ∂A. What about the rest
of A? Our next result shows that all elements of A that aren’t interior points must live in ∂A:

Claim. A \ intA ⊆ ∂A.
Proof. Pick any x ∈ A \ int A. Then Bδ(x) ∩ Ac ̸= ∅ for all δ > 0. Moreover, since x ∈ A,
Bδ(x) ∩A ̸= ∅ for all δ > 0. Thus x ∈ ∂A.

Our results don’t contradict the example from class, since 0 isn’t a boundary point of [0, 3): if
it were, every nonempty ball around 0 would have to intersect both [0, 3) and its complement,
but B1(0) = [0, 1) is disjoint from [0, 3)c = [3,∞).

2.7 Recall our graph theoretic example of a metric space: {A,B,C,D} with the distance between any two
of A,B,C being 2 and the distance between D and any one of A,B,C being 1.

(a) What’s ∂{B}?
∂{B} = ∅. To see this, first observe that B cannot be in the boundary, since the ball of
radius 1/2 around B only contains B. Similarly, a ball of radius 1/2 around any other point
would not contain B. Thus, there’s no point that can belong to the boundary of {B}.

5



(b) Describe all the open sets in this space.

Every subset of {A,B,C,D} is open. Indeed, for any p ∈ {A,B,C,D}, the ball of radius
1/2 around p only contains p, so every choice of p is an interior point in whichever set it
belongs to.

(c) Describe all the closed sets in this space.

Since all subsets of the space are open, their complements must all be closed—or in other
words, every subset of the space is clopen.

2.8 Recall from class that Br(p) denotes the “open ball” of radius r around the point p.

(a) Prove that for any p ∈ X and any positive r, Br(p) is open.

Pick any q ∈ Br(p), and set ϵ := r − d(p, q).

Claim. Bϵ(q) ⊆ Br(p)

Proof. Pick x ∈ Bϵ(q). Then

d(x, p) ≤ d(x, q) + d(p, q) < ϵ+ d(p, q) = r.

Thus, we’ve shown that every point of Br(p) is interior; it follows that Br(p) is open.

(b) What if r = 0 above? Is B0(p) open? You must either prove that it’s always open, prove that it’s
never open, or provide examples to show that it can be sometimes open and sometimes not open.

B0(p) = ∅, an open set.
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