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2.1 For each of the following metrics on R2, draw a picture the open ball B3

(
(2, 0)

)
. No proofs necessary.

(a) The chessboard metric d(x, y) = max{|x1 − y1|, |x2 − y2|}.

x

y
(5, 3)

(5,−3)

(−1, 3)

(−1,−3)

(2,0)

This open ball is the interior of a square of side length 6, centered at (2, 0), not including
any of the boundary.

(b) The British Rail metric

d(x, y) :=

{
|x|+ |y| if x ̸= y

0 otherwise.

(Here |x| denotes the Euclidean distance from x to the origin.)

x

y

(2, 0)

(0, 1)

This open ball is the single point (2, 0) union with the interior of the unit circle centered at
the origin (not including any of the boundary).



(c) The discrete metric d(x, y) =

{
1 if x ̸= y

0 if x = y.

By definition, d(x, y) ≤ 1 ∀x, y ∈ R2. Thus, the open ball is all of R2.

2.2 Suppose (X, d) is a metric space and A ⊆ X. We say p ∈ X is an interior point of A iff ∃r > 0 such that
Br(p) ⊆ A, and that p ∈ X is a limit point of A iff there exists a sequence (an) of points in A \ {p} such
that lim

n→∞
an = p. (As always, Br(p) denotes the ball of radius r around p.)

(a) Prove that A is open iff every point of A is an interior point of A. (In class we defined: A is open
iff ∂A ∩A = ∅.)

(⇒) Suppose A is open. Pick any a ∈ A. By hypothesis, a ̸∈ ∂A, so there is an ϵ > 0 such
that Bϵ(a) ⊆ A; in other words, a is an interior point of A. Thus every point of A is an
interior point.

(⇐) By definition, any interior point of A has a ball of some radius ϵ > 0 around it such that
the ball is entirely contained in A, which means an interior point cannot lie on ∂A. Thus, if
every point of A is an interior point, then no point of A is on the boundary of A. In other
words, A ∩ ∂A = ∅, whence A is open.

(b) Prove that A is closed iff every limit point of A is in A. (In class we defined: A is closed iff ∂A ⊆ A.)

(⇒) Suppose A has a limit point p that is not in the set. Then for any ϵ > 0, the ball of
radius ϵ about p must contain a point in A, by definition of p being a limit point. But that
ball also contains p itself, which is in Ac. Thus the ball intersects both A and Ac, hence
p is on the boundary of A. Since A does not contain one of its boundary points, it is not
closed. Thus any closed set must contain all its limit points.

(⇐) Suppose A is not closed. Then there is some point b ∈ ∂A \ A. Since b is on the
boundary of A, for any ϵ > 0, the ball of radius ϵ about b intersects A. Let nϵ be a point in
the intersection of the ball of radius ϵ and A; since b /∈ A, we see that nϵ ∈ A \ {b}. Then
the sequence n1, n1/2, n1/3, . . . is a sequence in A converging to b, so b is a limit point of A.
Thus A does not contain all its limit points. We conclude that any set that does contain all
its limit points must be closed.

2.3 Suppose (X, d) is a metric space. Prove that Br(p) is open for any p ∈ X and any r > 0.

Pick any q ∈ Br(p), and set ϵ := r − d(p, q). I claim

Bϵ(q) ⊆ Br(p).

To see this, pick any x ∈ Bϵ(q). Then d(x, p) ≤ d(x, q)+d(p, q) < ϵ+d(p, q) = r. Thus every
point of Br(p) is interior; it follows that Br(p) is open.

2.4 Decide (with proof or counterexample) whether each of the following is a metric space.

(a) R∞ := {(an) : (an) is a sequence of real numbers}, with respect to d(x, y) := max{|xn − yn|}.
This isn’t well-defined: the sequences xn = 0 and yn = n would get infinitely far apart under
this metric, but the codomain of any metric must be R and ∞ ̸∈ R!

Discussion. The fact that some sequences diverge doesn’t, by itself, guarantee that the
metric is ill-defined. For example, for the divergent sequence (yn) in the solution above, we
have d(yn, yn) = 0.
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(b) F := {A ⊆ Z : A is finite and nonempty}, with respect to d(X,Y ) := log
|X − Y |√
|X|
√
|Y |

. Here |S|

denotes the size of S and X − Y := {x− y : x ∈ X, y ∈ Y }.
No, this is not a metric, because d(A,A) might be nonzero. For example, let A := {2, 3}.
Then A−A = {0,±1}, so d(A,A) = log 3

2 ̸= 0.

Discussion. Remarkably, this function (called the Ruzsa distance) satisfies all the other
properties, including the triangle inequality.

2.5 Exploring metrics on R2.

(a) Prove that the Euclidean metric on R2 is, in fact, a metric.

By definition,
d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2.

This equals 0 iff both (x1 − y1)
2, (x2 − y2)

2 = 0, which happens iff x1 = y1 and x2 = y2. It’s
also clear that this metric is symmetric: d(x, y) = d(y, x). It remains to prove the triangle
inequality.

The most direct approach is quite algebraically involved. However, we can simplify this
significantly by observing that the Euclidean distance is translation invariant, i.e. that
d(x, y) = d(x − z, y − z) for any z. After translating appropriately, we see that triangle
inequality is equivalent to showing that

d(x, y) ≤ d(x, 0) + d(0, y) (∗)

for all x, y.

Note that (x1y2 − x2y1)
2 ≥ 0. It follows that

(x1y1 + x2y2)
2 ≤ (x2

1 + x2
2)(y

2
1 + y22). (†)

In particular,

−x1y1 − x2y2 ≤
√
(x2

1 + x2
2)(y

2
1 + y22).

From here, it’s straightforward to deduce√
(x1 − y1)2 + (x2 − y2)2 ≤

√
x2
1 + x2

2 +
√
y21 + y22

which is precisely (∗).

Discussion. One nice interpretation of (†) is in the language of linear algebra:

x⃗ · y⃗ ≤ |x⃗| · |y⃗|

where the left hand side is the dot product, while the right hand side is ordinary multiplica-
tion on R.

continued on next page...
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Discussion. Above, we saw that (†) implies (∗); it turns out that the converse implication
holds as well, so the inequality (†) is equivalent to the triangle inequality for the Euclidean
metric on R2. Similarly, it turns out the triangle inequality for the Euclidean metric on Rn

is equivalent to the following:

Lemma 1 (Cauchy-Schwarz inequality). For any real numbers ai, bi, we have(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)

(or equivalently, a⃗ · b⃗ ≤ |⃗a| · |⃗b|).
For more about this, see the document I posted on the course website, under the HW tab.

(b) Suppose O is a subset of R2 that’s open with respect to the Euclidean metric. Must it also be open
with respect to the taxicab metric?

Suppose O ⊆ R2 is open with respect to the Euclidean metric. Pick any α ∈ O; we claim
that α is in the interior of O with respect to the taxicab metric. Since O is open with
respect to the Euclidean metric, ∃δ > 0 such that the open euclidean ball of radius δ around
α is entirely contained inside O.

Consider the open taxicab ball of radius δ around α. Pick any x in this ball; by definition,
the taxicab distance between x and α is smaller than δ, i.e.

|x1 − α1|+ |x2 − α2| < δ.

Squaring both sides, we deduce

|x1 − α1|2 + |x2 − α2|2 ≤ |x1 − α1|2 + |x2 − α2|2 + 2|x1 − α1| · |x2 − α2| < δ2.

This implies that x lies in the Euclidean ball of radius δ around α, which we know is entirely
contained in O. We’ve therefore shown that every point in the taxicab ball of radius δ around
α is contained entirely in O; it follows that α is an interior point of O with respect to the
taxicab metric, as desired.

Discussion. All this becomes much more clear when looking at pictures: the taxicab open
ball is the largest diamond that fits inside the Euclidean ball of the same radius.

(c) The Euclidean and taxicab metrics on R2 both have the form

dp(x, y) :=
(
|x1 − y1|p + |x2 − y2|p

)1/p
(d1 is the taxicab metric, d2 is the Euclidean metric). It turns out that dp is a metric for every
real number p ≥ 1. (Don’t worry about proving it here, although it is a fun challenge to think
about when you have some spare time.) Can you describe any of the other metrics on R2 that we’ve
encountered (chessboard, British Rail, and discrete) in terms of dp? No formal proofs necessary, but
give a bit of justification for your answer.

This is open ended, of course, but the cleanest answers are those that describe the metric in
terms of dp without reference to specific inputs.

continued on next page...
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Claim. The chessboard metric is d∞ := lim
p→∞

dp.

Proof. If x = y then dp(x, y) = 0 for all p, so the limit is also 0. If x ̸= y, then without loss
of generality we have

max{|x1 − y1|, |x2 − y2|} = |x1 − y1| > 0.

Then

dp(x, y) = |x1 − y1|
(
1 +

(
|x2 − y2|
|x1 − y1|

)p)1/p

.

Since this is bounded above by |x1 − y1| · 21/p and bounded below by |x1 − y1|, we see
dp(x, y) → |x1 − y1| as p → ∞.

We can also express the discrete metric in terms of dp (albeit in a more artificial form) as
min{⌈d2⌉, 1}.

Discussion. The metric dp is called the ℓp metric; you will explore it in virtually any
advanced course on analysis.

2.6 Given a metric space (X, d) where X has at least 3 elements. Prove that there exists a metric on X
that’s not a scalar multiple of d or of the discrete metric.

Observe that rescaling a metric doesn’t affect its metric properties. Also, it’s easy to
see that summing any two metrics produces a metric. Thus, any linear combination
D(x, y) := αd1(x, y) + βd2(x, y) of any two metrics d1, d2 is a metric as well. In particular,
if the given metric d isn’t the discrete metric, then the sum of d and the discrete metric
produces a new metric on X.

However: if d is the discrete metric, then we haven’t solved the problem, since in this
case the sum of d and the discrete metric would be a scalar multiple of d! So in this case,
we have to do something more clever. There are many approaches to this; here’s one.

Given a metric d, set D(x, y) := d(x,y)
1+d(x,y) . I claim that D is a metric. It’s easy to verify the

first two properties, so it suffices to handle the triangle inequality:

D(x, z) = 1− 1

1 + d(x, z)
≤ 1− 1

1 + d(x, y) + d(y, z)
=

d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)
= D(x, y) +D(y, z).

It’s a simple exercise to check that D ̸= d and also cannot equal the discrete metric.

2.7 Given (X, d) a metric space and A ⊆ X. Prove that A is closed iff Ac is open.

We warm up with the following useful observation:

Lemma 2. For any set A ⊆ X, we have ∂A = ∂Ac.

continued on next page...
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Proof of Lemma. Let x ∈ ∂A. Then by the definition of a boundary point of A, for any
ϵ > 0, we have Bϵ(x)∩A ̸= ∅ and Bϵ(x)∩Ac ̸= ∅. Since (Ac)c = A, we can just as well write
that Bϵ(x) ∩Ac ̸= ∅ and Bϵ(x) ∩ (Ac)c ̸= ∅. But this is exactly the definition for x to be in
the boundary of Ac. Thus ∂A ⊆ ∂Ac. Replacing A with Ac, we have that ∂Ac ⊆ ∂(Ac)c.
Again, (Ac)c = A, so that means ∂Ac ⊆ ∂A. We now have subsets in both directions, so we
conclude ∂A = ∂Ac.

Now we turn to the given problem. Suppose A is open. Then ∂A ∩ A = ∅ by definition
of being an open set. That means all of ∂A is in Ac. Since ∂A = ∂Ac by our lemma, we
have that Ac contains all of its own boundary, hence it is closed. Now suppose A is closed.
Then it contains all of its boundary, so Ac contains none of the shared boundary, hence
Ac ∩ ∂Ac = ∅ and Ac is open.

Discussion. Most sets that you encounter in the wild are neither open nor closed!

2.8 In class we saw an example of a set that was open in R, but neither open nor closed when viewed as
sitting in R2.

(a) If A ⊆ R (with respect to the Euclidean metric) is open, is it possible for A× {1} to be open in R2

(with respect to the Euclidean metric)? Either prove that it’s never possible, or present an example
where it is possible.

No, it is not possible. To see this, pick any point in A× {1}, say, (a, 1), and consider a ball
Br(a, 1) in R2. This ball clearly intersects A× {1}, since (a, 1) ∈ Br(a, 1). But Br(a, 1) also
contains the point

(
a, 1 + r

2

)
/∈ A × {1}. In other words, every point in A × {1} is on the

boundary of A× {1}, so the set cannot be closed!

(b) If A ⊆ R (with respect to the Euclidean metric) is closed, is A × {1} closed in R2 (with respect
to the Euclidean metric)? Either prove that this is always the case, never the case, or that it is
sometimes the case and sometimes not by giving explicit examples.

It must be closed in R2 as well. We’ll prove this by showing that (A× {1})c is open.

Pick p /∈ A× {1}. If p2 = 1, then p1 /∈ A. Since A is closed, Ac is open, so there must exist
δ > 0 such that (p1 − δ, p1 + δ) ∩A = ∅. It immediately follows that Bδ(p) ∩ (A× {1}) = ∅.
We’ve proved:

p2 = 1 =⇒ p ∈ int
(
(A× {1})c

)
. (♣)

If p /∈ A × {1} and p2 ̸= 1, we proceed differently. Set ϵ := |p2−1|
2 , and consider Bϵ(p). For

any x ∈ Bϵ(p), we have

|x2 − p2| ≤
√

|x1 − p1|2 + |x2 − p2|2 < ϵ.

We deduce
2ϵ = |p2 − 1| ≤ |x2 − 1|+ |x2 − p2| < |x2 − 1|+ ϵ,

whence |x2 − 1| > ϵ. In particular, x /∈ A×{1}. We conclude that Bϵ(p)∩ (A×{1}) = ∅, or
in other words, that Bϵ(p) ⊆ (A× {1})c. We’ve proved:

p2 ̸= 1 =⇒ p ∈ int
(
(A× {1})c

)
. (♡)

Combining (♣) and (♡) shows that (A×{1})c consists entirely of interior points, hence must
be open; it follows that A× {1} must be closed.
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2.9 Prove that a point cannot be simultaneously in the interior of A and on the boundary of A. (More
generally, prove that A doesn’t contain its boundary iff A consists of interior points.) Why doesn’t this
contradict our bizarre example from Lecture 3, in which we saw that [0, 3) is open in R≥0 with respect
to the Euclidean metric?

Claim. ∂A ∩ intA = ∅.

Proof. Observe that

x ∈ ∂A =⇒ Bϵ(x) ∩Ac ̸= ∅ for all ϵ > 0 ⇐⇒ Bϵ(x) ̸⊆ A for all ϵ > 0 ⇐⇒ x /∈ intA.

Thus, we’ve proved that any interior point of A cannot live in ∂A. What about the rest of
A? Our next result shows that all elements of A that aren’t interior points must live in ∂A:

Claim. A \ intA ⊆ ∂A.

Proof. Pick any x ∈ A \ int A. Then Bδ(x) ∩ Ac ̸= ∅ for all δ > 0. Moreover, since x ∈ A,
Bδ(x) ∩A ̸= ∅ for all δ > 0. Thus x ∈ ∂A.

Our results don’t contradict the example from class, since 0 isn’t a boundary point of [0, 3): if
it were, every nonempty ball around 0 would have to intersect both [0, 3) and its complement,
but B1(0) = [0, 1) is disjoint from [0, 3)c = [3,∞).

2.x (Optional challenge problem—won’t be graded) Let Mn×n denote the space of all n×n matrices with real
entries. Prove that d(x, y) := rank(x− y) is a metric on Mn×n.

2.y (Optional research project, do not submit) In class, we played around with a visualization of our topologi-
cal proof of the Fundamental Theorem of Algebra. Play around with this some more! What more insights
can you glean from the picture about the polynomial or its roots? What if you change the polynomial?
Are there any patterns or symmetries you notice in the images of various circles?
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